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a b s t r a c t

We extend the standard mixture of linear regressions model by allowing the mixing
proportions to be modeled nonparametrically as a function of the predictors. This
framework allows for more flexibility in the modeling of the mixing proportions than the
fully parametric mixture of experts model, which we also discuss. We present an EM-like
algorithm for estimation of the new model. We also provide simulations demonstrating
that our nonparametric approach can provide a better fit than the parametric approach in
some instances and can serve to validate and thus reinforce the parametric approach in
others. We also analyze and interpret two real data sets using the new method.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In a typical multivariate finite mixture model, the k-dimensional vectors Y1, . . . , Yn are a simple random sample from
anm-component mixture distribution such that Yi has density

f (yi;ψ) =
m∑
j=1

λjg(yi; θj), (1)

wherem > 1 is fixed (and assumedknown for now) and theλj, called theweights (ormixing proportions) for the components,
are positive and sum to unity. The density g is assumed to come from a parametric family with parameter θj ∈ Θj ⊆ Rq,
where Θj is open in Rq. The mixture density f is parameterized by ψ ∈ 9, where 9 represents the parameter space for all
unknown parameters in the mixture model, i.e., (λ1, . . . , λm, θ1, . . . , θm).
Suppose now a vector of predictors, say Xi = (Xi,1, . . . , Xi,p)T for p < n, is also observed with each response Yi. The

goal is to describe the conditional distribution of Yi|Xi using a mixture of linear regressions with assumed Gaussian errors.
In this article, we will restrict attention to a univariate response variable Y ; this is common in the mixture-of-regressions
literature, and the univariate case is sufficient to elucidate the ideas we present. Thus, Eq. (1) becomes

f (yi; xi,ψ) =
m∑
j=1

λjφ(yi; xTi βj, σ
2
j ), (2)

where φ(·; xTi βj, σ
2
j ) is the univariate normal probability density function with mean xTi βj and variance σ

2
j for some

(βj, σ
2
j ) ∈ Rp × R+

∗
.

The uses of mixtures of regressions fall into two primary categories. The first involves estimating a set of regression
coefficients for all observations coming from a possibly unknown number of heterogeneous classes. This scenario arises
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Fig. 1. Plot (a) is a scatterplot of a data set from a tone perception study reported in Cohen (unpublished). Plot (b) shows simulated data illustratingmasked
outliers.

when it seems inaccurate to assume that a single regression adequately explains the relationship between the variables
at hand. An example of this scenario is depicted in Fig. 1(a), which shows data from an experiment on the perception
of musical tones (Cohen, unpublished). This usage of mixtures of regressions has been extensively studied in the
econometrics literature and was first introduced by Quandt (1972) as the switching regimes, or switching regressions,
problem.
A second use for mixtures of regressions is in outlier detection or robust regression estimation. For example, one

regression plane may adequately model the data, but there is an apparent class heterogeneity because of large variances
attributed to some observations, which are considered outliers. Another example, as considered by Viele and Tong (2002),
is when the outliers appear in clusters. Such outliers are said to bemasked, and Viele and Tong (2002) further describe them
as outliers that ‘‘cannot be detected individually by standard techniques’’. Pena et al. (2003) used a split and recombine
(SAR) procedure to identify possible clusters in a sample, which can be extended to identifying masked outliers. Fig. 1(b) is
a simulated data set with an extreme case of masked outliers, similar to those analyzed in Viele and Tong (2002) and Pena
et al. (2003). The cluster of points in the upper left of the scatterplot are high leverage outliers which traditional methods
fail to detect (see Justel and Pena, 1996).
Given the m-component mixture of regressions model (2) and a new observation (yn+1, xn+1), one might ask which

of the m regression functions in the model should be used to predict the value of the response yn+1. According to the
model, each regression should occur with probability equal to its corresponding λj, but this might not be realistic if xn+1
contains some information about the relative weights. To reflect this possibility in the notation, we may replace model (2)
by

f (yi; xi,ψ) =
m∑
j=1

λj(xi)φ(yi; xTi βj, σ
2
j ). (3)

How should we model λj(xi) in Eq. (3)? One way is to assume a parametric form, such as a logistic function, which
introduces new parameters requiring estimation. This is the idea of the hierarchical mixtures of experts (HME) procedure
(Jacobs et al., 1991), which is commonly used in neural networks. Yet just as nonparametric regression techniques are
sometimes preferred over parametric regression – for instance, in situations where prediction of new observations is more
important than explanation or where one wishes to verify a putative parametric form or even discover a new one without
assuming one a priori – one might reasonably wish to determine λj(xi) nonparametrically. Our method allows such a
determination.
In the remainder of this article, we discuss the HME model, then introduce our alternative nonparametric method

for modeling the mixing weights as functions of the predictors. We also provide an EM-like algorithm for estimation
using our method. Finally, we illustrate the method using both simulated data sets and real data sets. The code for the
estimation procedures is included in the packagemixtools (Young et al., 2008) for the R statistical computing environment
(R Development Core Team, 2008).

2. Hierarchical mixtures of experts

The hierarchical mixtures of experts (HME) model comes from the statistical learning, or machine learning, literature
(see Jordan and Jacobs (1992), Jordan and Jacobs (1994) and Jordan and Xu (1995) for discussion). Finite mixture
models, like the ones in this article, may be considered an unsupervised learning method in the sense that there are
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