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a b s t r a c t

Nonparametric tests for the null hypothesis that a function has a prescribed form are
developed and applied to data sets with missing observations. Omnibus nonparametric
tests such as the order selection tests, do not need to specify a particular alternative
parametric form, and have power against a large range of alternatives. More specifically,
likelihood-based order selection tests are defined that can be used for multiply imputed
data when the data are missing-at-random. A simulation study and data analysis illustrate
the performance of the tests. In addition, an Akaike information criterion for model
selection is presented that can be used with multiply imputed datasets.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Testing the lack-of-fit of a parametric function is well-studied. Several types of tests exist, ranging from fully parametric
tests, to semiparametric and nonparametric omnibus tests. For an overview of nonparametric tests, see Hart (1997). In
settings with missing data, testing for lack-of-fit is more complicated. González-Manteiga and Pérez-González (2006)
developed a test based on local linear estimators for a linear regressionmodelwithmissing response values but a completely
observed covariate. We address in particular lack-of-fit tests for missing data situations where multiple imputation is
applied. We will focus on a class of smoothing-based tests that use the idea of order selection. Our tests are applicable
in parametric likelihood models and are not restricted to linear models.
Eubank and Hart (1992) introduced the order selection test in linear regression models. The idea is to test the shape of

a parametric function, most often the mean of the response, by considering not a single one, but a sequence of alternative
models. These alternative models are constructed by means of a series expansion of the function of interest around the
hypothesized null model. A data-driven method is then applied to select the ‘‘order’’ of the alternative model. That is, in
the sequence of alternative models, a method such as Akaike’s information criterion AIC (Akaike, 1973) will select the most
appropriate one. If the selected model coincides with the null model, the test does not reject the null hypothesis. However,
if a model different from the null model is selected, the test will reject the null hypothesis. In those instances, the order of
the chosen model, that is, the number of parameters in the model, exceeds that of the null model. Written in another way,
this test statistic takes the form of a maximum of weighted likelihood ratio statistics, which clearly indicates the omnibus,
or nonparametric nature of the test.
By using such a series expansion the class of alternative models is large and is not restricted to a single specified

alternative. For example, ifwewould just test a linear versus a quadratic fitwewouldmiss out onhigh frequency alternatives
for which the quadratic term happens to be zero. Instead, we are interested in the development of tests that are sensitive to
essentially any departure from the null hypothesis.
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The original order selection tests are extended towards testing in general likelihood models by Aerts et al. (1999) and to
multiple regression models by Aerts et al. (2000). Recently, these tests have been studied for inverse regression problems
by Bissantz et al. (2009). Test statistics can be based on likelihood ratio, Wald statistics, or score statistics. All of these
methods are based on completely observed data.
In practice, many data sets contain one ormoremissing observations.We refer to Little and Rubin (2002) for an overview

ofmethods to deal with such data. Throughout the paperwemake the assumption that the data aremissing-at-random; this
means that themissingness depends only on the observed data. Most research focuses on the estimation undermissingness.
Multiple imputation methods are particularly attractive since once values are imputed, traditional, complete case methods
can be applied to filled-in data sets. Single imputation, where unknown observations are each replaced by a single value,
risks understating uncertainty. Inference is generally improved by imputing values several, saym times, creatingm complete
data sets, withm = 5 a typical choice based on coverage properties seen in simulation studies. Li et al. (1991a) considered
hypothesis testing in this setting. In particular, for a parametric null hypothesis of the form θ = θ0, with an alternative of
the form θ 6= θ0, they construct a Wald test by combining the results of mWald tests, one for each of the m imputed data
sets. They show that the distribution of such a test statistic can be approximated by that of an F-distribution with degrees
of freedom that depend on the fraction of missing information. Meng and Rubin (1992) extend this idea to combining m
likelihood ratio tests. Recently, Reiter (2007) obtained an alternative approximation to the degrees of freedom for such
combined Wald test statistics that should work better for small samples.
The main idea of this paper is to use the combined likelihood ratio tests for the m imputed data sets to perform order

selection. In this way, we enlarge the testing power by not considering a single parametric test, since order selection tests
are constructed to be powerful against a wide range of alternative models. This creates a straightforward to use lack-of-fit
test in the setting of missing data.
Section 2 defines the order selection test first for complete data, and then proposes the new test for the case of multiply

imputed data sets. Sections 3 and 4 apply the test to a data example and in a simulation study. A version of Akaike’s
information criterion thatworkswithmultiply imputed datasets is obtained in Section 5. Section 6 presents some extensions
of the proposed method.

2. The order selection test

2.1. A model sequence for order selection

We consider a set of data Zi = (Yi, xi), i = 1, . . . , n with joint density depending on a function γ (·) of interest (most
often this is the mean response, conditional on covariates) and on some other nuisance parameters η (such as an unknown
variance). We wish to test the hypothesis

H0 : γ (·) ∈ G = {γ (·,βp) : βp = (β0, . . . , βp) ∈ Θ}, (1)

where the parameter space Θ ⊂ Rp+1. A simple example is to test for linearity of the mean response, that is, E(Y |x) =
γ (x,β1) = β0 + β1x. In a parametric hypothesis testing procedure, a specific parametric model would be stated for
the alternative hypothesis. In nonparametric or omnibus testing, this is avoided by constructing a sequence of alternative
models. These alternatives could be quite general. For regression models, following the approach of Aerts et al. (1999), we
focus on additive series expansions of the true underlying function γ (·) around the null model. For convenience, we use
r = 0 to index the null model in (1), and we define for r = 0, 1, 2, . . . ,

γ (x;β0, . . . , βp+r) = γ (x;β0, . . . , βp)+
r∑
j=1

βp+jψj(x), (2)

where the basis functions ψj(·) are known functions. Most often these functions are taken to be (orthogonalized)
polynomials, Legendre polynomials, cosine functions or wavelet functions. For all further analysis, we consider functions
ψj that are not already used in the null model. For example, a polynomial expansion to test whether the mean E(Y |X =
x) = β0 + β1x, will take for ψ1(x) an (orthogonalized) quadratic function, for ψ2(x) a cubic function, etc. The reason for
starting with a quadratic function is that the constant and linear function are already included in the null model.
In practice it is not possible to include an infinite number of terms in the series expansion in (2). The series will be

truncated at a value Rn that might depend on the size of the dataset, in particular it always holds that Rn should not exceed
n. The order selection test actively uses a model selection criterion to perform the test. For each r = 0, 1, 2, . . . , Rn a model
with function γ (·;β0, . . . , βp+r) is fit to the data. This results in a sequence of Rn + 1 fitted models. A model selection
criterion such as the AIC (Akaike, 1973) is applied to select one of these models. If a model different from the null model is
selected, in other words, when the selected order r̂ > 0, then the null hypothesis (1) is rejected. When the selected order
r̂ = 0, the null model cannot be rejected.
Asymptotic distribution theorywas developed by Eubank and Hart (1992) for linear regressionmodels. Aerts et al. (1999,

2000) extended this to likelihood-based regression models, and related the order selection test statistic to a test statistic
that is the supremum of a set of weighted likelihood ratio statistics. Specifically, the null hypothesis (1) is rejected when an
AIC-type criterion of the form

aic(r, Cn) = 2{log L(η̂, β̂0, . . . , β̂p+r)− log L(η̂, β̂0, . . . , β̂p)} − Cnr, r = 0, 1, 2, . . . , Rn,
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