Available online at www.sciencedirect.com

SCIENCE@DIREOT“ COMPUTATIONAL
STATISTICS
& DATA ANALYSIS

ELSEVIER Computational Statistics & Data Analysis 48 (2005) 857868 _—
www.elsevier.com/locate/csda

Bayesian computation for logistic regression

Pieter C.N. Groenewald®*, Lucky Mokgatlhe®

A Mathematical Statistics, University of the Free State, Bloemfontein 9300, South Africa
Y University of Botswana, Gabarone, Botswana

Received 28 October 2003; received in revised form 15 April 2004; accepted 15 April 2004

Abstract

A method for the simulation of samples from the exact posterior distributions of the
parameters in logistic regression is proposed. It is based on the principle of data
augmentation and a latent variable is introduced, similar to the approach of Albert and Chib
(J. Am. Stat. Assoc. 88 (1993) 669), who applied it to the probit model. In general, the
full conditional distributions are intractable, but with the introductions of the latent variable
all conditional distributions are uniform, and the Gibbs sampler is easily applicable. Marginal
likelihoods for model selection can be obtained at the expense of additional Gibbs
cycles. The technique is extended and can be applied with nominal or ordinal
polychotomous data.
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1. Introduction

When modelling binary data, the outcome variable Y has a Bernoulli distribution
with probability of success n. If the probability of success depends on a set of co-
variates, then we have a distinct probability 7;, specific to the ith observation, Y;. The
probability 7; is regressed on the covariates through a link function that preserves the
properties of probability. So n; =H(Bx;) where X; is the vector of covariates associated
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with the ith observation, 0 < H(.) < 1, and H(.) is a continuous non-decreasing func-
tion. Usually the link function is taken as the cumulative distribution function (CDF)
of some continuous random variable, defined on the whole real line. The two link
functions in common use are the CDF of the standard normal distribution, the probit
model, and the CDF of the logistic distribution, the logit model. These kinds of models
are described in detail in a number of books. See, for example, Cox (1971) or Maddala
(1983). For a sample of n observations, the likelihood function is given by

L(p|data) oc [T H(Bx:)"'(1 — H(Bx:))' ™. (1.1)
i=1

When using maximum likelihood estimation, inferences about the model are usually
based on asymptotic theory. Griffiths et al. (1987) found that the MLEs have significant
bias for small samples. With the Bayesian approach and prior n(f), the posterior of B
is given by

n(P|data) oc m(P)L(P|data), (1.2)

which is intractable in the case of the probit and logit models. In the past, asymptotic
normal approximations were used for the posterior of B. Zellner and Rossi (1984) used
numerical integration when the number of parameters is small. Albert and Chib (1993)
introduced a simulation-based approach for the computation of the exact posterior dis-
tribution of P in the case of the probit model. The approach is based on the idea of data
augmentation (Tanner and Wong, 1987), where a normally distributed latent variable
is introduced into the problem. This approach also enables them to model binary data
using a ¢ link function.

In this paper we apply the data augmentation approach of Albert and Chib (1993)
to the logit model. This enables us to use Gibbs sampling to obtain samples from
the posterior distribution of B, drawing only from uniform distributions. The technique
is extended in Section 3 to multiple response categories, and in Section 4 applied to
ordinal responses where the thresholds, or cut off points, must also be estimated. Again,
only simulation from uniform distributions is required to obtain marginal posterior
distributions.

Gibbs sampling is a simplified version of the Metropolis—Hastings algorithm
(Metropolis et al., 1953; Hastings, 1970), and applicable when it is possible to
sample directly from all conditional distributions. The Metropolis—Hastings algorithm
is usually employed in the case of logistic regression. Other Markov chain Monte Carlo
techniques in use are adaptive rejection sampling (ARS), which is used in the WinBugs
software, and adaptive rejection metropolis sampling (ARMS).

While marginal posterior distributions of parameters in logistic regression can be
obtained using WinBugs, it cannot provide marginal likelihoods. In Section 5 the
data augmentation technique is applied to model selection via Bayes factors. Based
on a method proposed by Chib (1995), the marginal likelihood under a particular
model can be calculated by running additional Gibbs cycles, one for each
parameter in the model. In Section 6 the technique is illustrated by two
applications.
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