Note

A solvable case of image reconstruction in discrete tomography

M.C. Costa ${ }^{\text {a }}$, D. de Werra ${ }^{\text {b }}$, C. Picouleau ${ }^{\text {c }}$, D. Schindl ${ }^{\text {d }}$
${ }^{\text {a }}$ Labo CEDRIC, CNAM, Paris, France
b IMA - EPFL, Lausanne, Switzerland ${ }^{\text {c }}$ CNAM, Paris, France
${ }^{\mathrm{d}}$ GERAD - HEC, Montreal, Canada

Received 3 October 2003; received in revised form 24 February 2005; accepted 17 March 2005
Available online 27 April 2005

Abstract

A graph-theoretical model is used to show that a special case of image reconstruction problem (with 3 colors) can be solved in polynomial time.

For the general case with 3 colors, the complexity status is open. Here we consider that among the three colors there is one for which the total number of multiple occurrences in a same line (row or column) is bounded by a fixed parameter. There is no assumption on the two remaining colors. © 2005 Elsevier B.V. All rights reserved. Keywords: Complete bipartite graph; Edge coloring; Perfect matchings; Discrete tomography

1. Introduction

We shall consider a special case of image reconstruction problem in discrete tomography.
The formulation will be based on graph-theoretic concepts (see [2]) and this will allow us to show that this case can be solved in polynomial time; it generalizes earlier known cases where the problem can be solved. The complexity status of a slight extension of this solvable case is still open; so our result is a step towards the boundary between easy and

[^0]difficult problems in image reconstruction. The reader is referred to [5] for definitions about complexity.

We shall now define the general image reconstruction problem as follows: an image of $(m \times n)$ pixels of p different colors has to be reconstructed. For convenience we consider that there is in addition a color $p+1$ which is the ground color. We are given the number $\alpha(i, s)$ of pixels of each color s in each row i and also the number $\beta(j, s)$ of pixels of each color s in each column j; is it possible to reconstruct an image, i.e., can one assign a color s to each entry (i, j) of the image in such a way that there are $\alpha(i, s)$ occurrences of color s in each row i and $\beta(j, s)$ occurrences of color s in each column j, for all i, j, s ?

This simplified version of image reconstruction problems occurring in discrete tomography is denoted by $R(m, n, p)$; it is a combinatorial problem whose complexity status is unknown for $p=2$ colors (i.e., when we have $p+1=3$ colors including the ground color). It is NP-complete for $p \geqslant 3$ (see [3,6]). In [4] some special cases solvable in polynomial time have been presented. Notice that it is solvable in polynomial time if $p+1=2$ (see [7]).

For a solution to exist we must necessarily have

$$
\begin{aligned}
& \sum_{s=1}^{p+1} \alpha(i, s)=n, \quad i=1, \ldots, m, \\
& \sum_{s=1}^{p+1} \beta(j, s)=m, \quad j=1, \ldots, n, \\
& \sum_{i=1}^{m} \alpha(i, s)=\sum_{j=1}^{n} \beta(j, s), \quad s=1, \ldots, p+1 .
\end{aligned}
$$

These conditions are necessary but not sufficient for the existence of a solution to $R(m, n, p)$.

2. Graph-theoretical formulation

We associate with the problem a complete bipartite graph $G=K_{m, n}$ on two sets of nodes R, S with sizes m and n. Each edge $[i, j]$ of $K(m, n)$ corresponds to entry (i, j) in row i and column j of the $(m \times n)$ array.

The image reconstruction problem can be interpreted as follows: The entries of color s in the array correspond to a subset B_{s} of edges (a partial subgraph of $K(m, n)$ such that B_{s} has $\alpha(i, s)$ edges adjacent to node i of R and $\beta(j, s)$ edges adjacent to node j of S. We have to find a partition $B_{1}, B_{2}, \ldots, B_{p+1}$ of the edge set of $K(m, n)$ where each B_{s} satisfies the above degree requirements.

As mentioned above, for the case $p+1=3$, the complexity is unknown. The problem is solvable in polynomial time with $p+1=4$ colors (see [4]) if three colors, say colors 1,2 and 3 , are unary, i.e. $\alpha(i, s) \leqslant 1, \beta(j, s) \leqslant 1$ for $s=1,2,3$, and all i, j. In the same paper, it is shown that it is solvable with $p+1=3$ colors if two colors, say colors 1 and 2 , are semi-unary, i.e. $\alpha(i, 1) \leqslant 1 \forall i$ or $\beta(j, 1) \leqslant 1 \forall j$, and $\alpha(i, 2) \leqslant 1 \forall i$ or $\beta(j, 2) \leqslant 1 \forall j$.

https://daneshyari.com/en/article/10328478

Download Persian Version:
https://daneshyari.com/article/10328478

Daneshyari.com

[^0]: E-mail addresses: costa@cnam.fr (M.C. Costa), dewerra.ima@epfl.ch (D. de Werra), chp@cnam.fr (C. Picouleau), david.schindl@a3.epfl.ch (D. Schindl).

