ELSEVIER

Available online at www.sciencedirect.com

Discrete Applied Mathematics 148 (2005) 240-245

DISCRETE APPLIED MATHEMATICS

www.elsevier.com/locate/dam

Note

A solvable case of image reconstruction in discrete tomography

M.C. Costa^a, D. de Werra^b, C. Picouleau^c, D. Schindl^d

^aLabo CEDRIC, CNAM, Paris, France ^bIMA - EPFL, Lausanne, Switzerland ^cCNAM, Paris, France ^dGERAD - HEC, Montreal, Canada

Received 3 October 2003; received in revised form 24 February 2005; accepted 17 March 2005 Available online 27 April 2005

Abstract

A graph-theoretical model is used to show that a special case of image reconstruction problem (with 3 colors) can be solved in polynomial time.

For the general case with 3 colors, the complexity status is open. Here we consider that among the three colors there is one for which the total number of multiple occurrences in a same line (row or column) is bounded by a fixed parameter. There is no assumption on the two remaining colors. © 2005 Elsevier B.V. All rights reserved.

Keywords: Complete bipartite graph; Edge coloring; Perfect matchings; Discrete tomography

1. Introduction

We shall consider a special case of image reconstruction problem in discrete tomography. The formulation will be based on graph-theoretic concepts (see [2]) and this will allow us to show that this case can be solved in polynomial time; it generalizes earlier known cases where the problem can be solved. The complexity status of a slight extension of this solvable case is still open; so our result is a step towards the boundary between easy and

E-mail addresses: costa@cnam.fr (M.C. Costa), dewerra.ima@epfl.ch (D. de Werra), chp@cnam.fr (C. Picouleau), david.schindl@a3.epfl.ch (D. Schindl).

⁰¹⁶⁶⁻²¹⁸X/\$ - see front matter © 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.dam.2005.03.006

difficult problems in image reconstruction. The reader is referred to [5] for definitions about complexity.

We shall now define the general image reconstruction problem as follows: an image of $(m \times n)$ pixels of *p* different colors has to be reconstructed. For convenience we consider that there is in addition a color p + 1 which is the ground color. We are given the number $\alpha(i, s)$ of pixels of each color *s* in each row *i* and also the number $\beta(j, s)$ of pixels of each color *s* in each row *i* and also the number $\beta(j, s)$ of pixels of each color *s* in each row *i* and also the number $\alpha(i, s)$ of pixels of each color *s* in each row *i* and also the number $\alpha(i, s)$ of pixels of each color *s* in each row *i* and also the number $\alpha(i, s)$ of pixels of each color *s* in each column *j*; is it possible to reconstruct an image, i.e., can one assign a color *s* to each entry (i, j) of the image in such a way that there are $\alpha(i, s)$ occurrences of color *s* in each row *i* and $\beta(j, s)$ occurrences of color *s* in each column *j*, for all *i*, *j*, *s*?

This simplified version of image reconstruction problems occurring in discrete tomography is denoted by R(m, n, p); it is a combinatorial problem whose complexity status is unknown for p = 2 colors (i.e., when we have p + 1 = 3 colors including the ground color). It is NP-complete for $p \ge 3$ (see [3,6]). In [4] some special cases solvable in polynomial time have been presented. Notice that it is solvable in polynomial time if p + 1 = 2 (see [7]).

For a solution to exist we must necessarily have

$$\sum_{s=1}^{p+1} \alpha(i, s) = n, \quad i = 1, \dots, m,$$
$$\sum_{s=1}^{p+1} \beta(j, s) = m, \quad j = 1, \dots, n,$$
$$\sum_{i=1}^{m} \alpha(i, s) = \sum_{j=1}^{n} \beta(j, s), \quad s = 1, \dots, p+1$$

These conditions are necessary but not sufficient for the existence of a solution to R(m, n, p).

2. Graph-theoretical formulation

We associate with the problem a complete bipartite graph $G = K_{m,n}$ on two sets of nodes R, S with sizes m and n. Each edge [i, j] of K(m, n) corresponds to entry (i, j) in row i and column j of the $(m \times n)$ array.

The image reconstruction problem can be interpreted as follows: The entries of color *s* in the array correspond to a subset B_s of edges (a partial subgraph of K(m, n) such that B_s has $\alpha(i, s)$ edges adjacent to node *i* of *R* and $\beta(j, s)$ edges adjacent to node *j* of *S*. We have to find a partition $B_1, B_2, \ldots, B_{p+1}$ of the edge set of K(m, n) where each B_s satisfies the above degree requirements.

As mentioned above, for the case p + 1 = 3, the complexity is unknown. The problem is solvable in polynomial time with p + 1 = 4 colors (see [4]) if three colors, say colors 1, 2 and 3, are *unary*, i.e. $\alpha(i, s) \leq 1$, $\beta(j, s) \leq 1$ for s = 1, 2, 3, and all *i*, *j*. In the same paper, it is shown that it is solvable with p + 1 = 3 colors if two colors, say colors 1 and 2, are *semi-unary*, i.e. $\alpha(i, 1) \leq 1 \forall i$ or $\beta(j, 1) \leq 1 \forall j$, and $\alpha(i, 2) \leq 1 \forall i$ or $\beta(j, 2) \leq 1 \forall j$.

Download English Version:

https://daneshyari.com/en/article/10328478

Download Persian Version:

https://daneshyari.com/article/10328478

Daneshyari.com