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given partition, we test with an exact algorithm for bipartitioning if it is worthwhile to split
some communities or to merge two of them. A combination of merge and split actions is
also performed. Computational experiments show that the proposed approach is effective
in improving heuristic results.
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1. Introduction

The identification of communities in complex networks has become in recent years a very active research domain
[37,18] because of the common representation of complex real-world systems arising in a variety of fields as networks.
One then aims to find communities, or clusters, of entities grouped on the basis of some relationship holding among them.
Telecommunication networks such as the World Wide Web, biological networks representing interactions between proteins
and social networks representing collaborations or conflicts between people or countries are some examples of real-life
applications (see [37] for a detailed introduction).

Intuitively, one would say that a set of vertices of a network form a community if edges joining two vertices of that set
are frequent and edges joining a vertex of that set to a vertex outside are not. This concept has been refined in many ways,
leading to the introduction of concepts of modularity [40], modularity density [32], min-max cut [ 14], normalized cut [48] and
others. Among these concepts, modularity is by far the most popular.

Modularity of a community is defined in [40] as the difference between the fraction of edges it contains and the expected
fraction of edges it would contain if they were placed at random, keeping the same degree distribution. Then, modularity
of a partition of a network into communities is defined as the sum of the modularities of these communities. Modularity
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expresses not only that a community contains a large fraction of the edges, but also that it contains a larger fraction of
the edges than would be expected. It can be viewed as a measure of the extent to which the classes of a partition of a
graph can be considered to be communities. Alternatively, modularity can be maximized to find an optimal partition of a
network.

Modularity maximization has spawned in recent years numerous methods for cluster identification in networks. Despite
its popularity, the accuracy and the significance of modularity maximizing modules are not well understood for real-world
networks [21]. Furthermore, some criticism have been raised in recent literature, see, e.g., [21,19,7,34,30]. The two main
concerns are the existence of a resolution limit and the fact that modularity function exhibits a degeneracy. The resolution
limit, identified by Fortunato and Barthelemy [19], implies that, in the presence of large clusters, some clusters smaller
than a certain size which depends on the number of edges of the network can be undetectable. As a consequence, modular
structures like small cliques can be hidden in larger clusters. This effect appears to be driven primarily by the assumption
that inter-module connectivity follows a random graph model [21]. Degeneracy (see [21]) implies that there can be a large
number of partitions, even very different from each other, having high modularity values. This makes it easy to find high-
scoring partitions but difficult to identify the global optimum. To address these criticisms a few approaches have been
proposed. Sales-Pardo et al. [46] address the problem of degeneracy combining information from many distinct partitions
with high modularity. Multiresolution methods [28,3,44] allow us to specify a target resolution limit and identify clusters on
such given scale, though they do not solve the problem in a fully satisfactory manner. Despite these criticisms, modularity
maximization still appears to be a very popular technique for network clustering. It exhibits, in fact, some clear advantages:
modularity function has a clear and simple mathematical description and does not depend on parameters being decided
arbitrarily (as an example, maximizing the number of intracluster edges requires some other parameter, e.g. the minimum
cluster size); modularity maximization gives an optimal partition together with the number of clusters not to be specified
in advance. Interestingly, one can use mathematical programming to model the community detection problem and, using
modularity maximization, the splitting of a cluster into two can be expressed as a quadratic programming problem. This
paper discusses such a formulations and exploits it within a procedure used as a refinement of previously computed
partitions.

Numerous heuristics and a few algorithms have been proposed to find near optimal or optimal partitions respectively
for the maximum modularity criterion. Heuristics are either partitioning methods or hierarchical divisive or agglomerative
ones. Partitioning heuristics are based on simulated annealing [24,34,35], mean field annealing [31], genetic search [50],
extremal optimization [16], spectral clustering [38], linear programming followed by randomized rounding [ 1], dynamical
clustering [5], multilevel partitioning [15], contraction-dilation [36], quantum mechanics [41] and several other
approaches [4,9,49,45,17,28]. Agglomerative hierarchical clustering [39,10,12,51,4] proceeds from an initial partitions
into communities each containing a single vertex to merging sequentially vertices or sets of vertices corresponding to
communities. In [47] this approach is combined with a vertex mover routine which improves the partitions by changing the
community of a vertex to that of one of its adjacent vertices. Divisive hierarchical clustering proceeds from an initial trivial
partition in one community containing all vertices and sequentially selects a community and proceeds to its bipartitioning.
Divisive heuristics are much less frequent than agglomerative ones. The best known of them is Newman’s spectral
heuristic [38], which uses the signs of the first eigenvector of the modularity matrix to perform successive bipartitions.
In a companion paper [8], we propose a hierarchical divisive heuristic which is locally optimal, i.e., in which all successive
bipartitions are done in an optimal way.

These heuristics are able to solve large instances with up to thousand or tens of thousands of vertices (and sometimes over
amillion) and therefore are often preferred to exact algorithms, even though they do not have a guarantee of optimality. Only
a few papers propose exact algorithms for maximizing modularity. The first one, due to Xu et al. [53], uses quadratic mixed-
integer programming with a convex relaxation. Networks with up to 104 vertices were addressed successfully. Brandes
et al. [6] have shown that modularity maximization is NP-hard, even if there are only two communities. In addition, they
propose to express modularity maximization as a clique partitioning problem. They maximize modularity of networks with
up to 105 vertices. Their algorithm is close to that of Grétschel and Wakabayashi [22,23]. Aloise et al. [2] apply column
generation to modularity maximization and solve exactly instances with up to 512 vertices.

Given a partition found by a heuristic, one can apply another heuristic or an exact algorithm to the subnetworks induced
by the communities found. This will eventually lead to a new, better, partition. Moreover, this refinement can be based on
splitting a community or merging a pair of communities. In the spirit of matheuristics, an exact algorithm for bipartition is
applied in our approach first to the communities considered one at a time, then merging pairs of communities and applying
again the bipartition algorithm.

We employ our approach as post-processing of some known heuristics for modularity maximization, obtaining improved
solutions and, for some datasets, the optimal partition.

The paper is organized as follows. In the next section, the proposed approach to improve heuristic results for modularity
maximization is described, presenting in particular an exact algorithm for bipartition. Section 3 presents the results of
computational experiments carried out applying the proposed approach as post-processing to three of the best heuristics
available for modularity maximization of networks, i.e., the agglomerative hierarchical heuristic of Clauset et al. [10],
the partitioning heuristic of Noack and Rotta [42] and the multistep greedy with vertex move heuristic of Schuetz and
Caflisch [47]. We also apply this approach to the locally optimal divisive hierarchical heuristic of [8]. Conclusions are given
in Section 4.
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