
Load Balancing Parallel Explicit State Model

Checking

Rahul Kumar 1 and Eric G. Mercer 2

Verification and Validation Laboratory
Department of Computer Science

Brigham Young University
Provo, USA

Abstract

This paper first identifies some of the key concerns about the techniques and algorithms developed
for parallel model checking; specifically, the inherent problem with load balancing and large queue
sizes resultant in a static partition algorithm. This paper then presents a load balancing algorithm
to improve the run time performance in distributed model checking, reduce maximum queue size,
and reduce the number of states expanded before error discovery. The load balancing algorithm is
based on generalized dimension exchange (GDE). This paper presents an empirical analysis of the
GDE based load balancing algorithm on three different supercomputing architectures—distributed
memory clusters, Networks of Workstations (NOW) and shared memory machines. The analysis
shows increased speedup, lower maximum queue sizes and fewer total states explored before error
discovery on each of the architectures. Finally, this paper presents a study of the communication
overhead incurred by using the load balancing algorithm, which although significant, does not offset
performance gains.

Keywords: model checking, parallel, distributed, load balancing, GDE, queue size, error
detection, communication

1 Introduction

Explicit state model checking is a methodology to verify properties in a design
through reachability analysis. The practical application of model checking,
however, is hindered by the state explosion problem [5]. State explosion is a
result of enumerating the state space of a concurrent system using interleaving

1
Email: rahul@cs.byu.edu

2
Email: egm@cs.byu.edu

Electronic Notes in Theoretical Computer Science 128 (2005) 19–34

1571-0661/$ – see front matter © 2005 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.10.016

mailto:rahul@cs.byu.edu
mailto:egm@cs.byu.edu
http://www.elsevier.com/locate/entcs


semantics where each concurrently enabled transition must be considered sep-
arately in any given state. Several techniques exist to address aspects of the
state explosion problem. Symmetry and partial order reduction exploit struc-
ture and concurrency to reduce the number of states in the reachable state
space that must be explored to complete the model checking problem [3][6].
Bit state hashing (supertrace) and hash compaction reduce the cost of storage
states in the reachable state space [7][13]. All of these techniques enable the
verification of larger problems, but in the end, are restricted to the number
of states that can be stored on a single workstation. If the model checking
algorithm exhausts resources on the workstation it is running on before com-
pletion of the verification problem, then the problem must be altered in some
way to reduce the size of its reachable state space until it can fit into the
available resources.

The goal of distributed model checking is to combine the memory and
computational resources of several processors to enhance state generation and
storing capacity. The seminal work in distributed model checking presented by
Stern and Dill creates a static partition of the reachable state space during ex-
ecution [14]. The workload observed as a function of time and communication
overhead on each processor depends critically on how the states are partitioned
between the verification processes. Several techniques such as caching (sibling
and state), partial order reduction, symmetry reduction, different partition
functions and dynamic partitioning have been explored in the past to reduce
communication overhead and create perfect state distributions [11][10]. Even
with the use of the above mentioned techniques, creating a perfect partition
for any given problem while maintaining equally loaded processors requires a
priori knowledge of the state space, which is the very problem we are trying
to solve.

This paper presents an empirical study of the seminal static partition al-
gorithm showing the level of load imbalance, regardless of the chosen static
partition, that exists between the processes on different supercomputing plat-
forms. The imbalance results in high idle times in several processors, as well
as extremely large search queues. The high idle times indicate that many pro-
cessors are not contributing to state enumeration, and the large search queues
lead to premature termination by exhausting memory resources. Furthermore,
the imbalance in the partition slows down error discovery since states leading
to errors can be buried deep in the search queues. The paper further presents
a load balancing algorithm based on generalized dimensional exchange(GDE)
to mitigate idle time at the expense of additional communication overhead.
Load balancing the state partition algorithm improves speedup in distributed
model checking despite the increased communication. In addition, it reduces

R. Kumar, E.G. Mercer / Electronic Notes in Theoretical Computer Science 128 (2005) 19–3420



Download English Version:

https://daneshyari.com/en/article/10328879

Download Persian Version:

https://daneshyari.com/article/10328879

Daneshyari.com

https://daneshyari.com/en/article/10328879
https://daneshyari.com/article/10328879
https://daneshyari.com

