
CTL* Model Checking on a Shared-Memory

Architecture

Cornelia P. Inggs1 ,2 and Howard Barringer3

Department of Computer Science
University of Manchester

UK

Abstract

In this paper we present a parallel algorithm for CTL* model checking on a virtual shared-memory
high-performance parallel machine architecture. The algorithm is automata-driven and follows a
games approach where one player wins if the automaton is empty while the other player wins if
the automaton is nonempty. We show how this game can be played in parallel using a dynamic
load balancing technique to divide the work across the processors. The practicality and effective
speedup of the algorithm is illustrated by performance graphs.

Keywords: Model Checking, Shared-Memory, Parallelisation, Automata, Game Theory

1 Introduction

Model checking is an established technology for automated verification of de-
signs, now adopted by industry to check correctness properties of many critical
systems. The tremendous advances that have been made over the past decade
in developing specialised state encodings and algorithms to reduce the burden
of the state explosion problem, inherent with this style of verification, have
been paramount to this industrial take-up. Even so, the size and complexity of

1 This work was fully supported under a Universities UK ORS award, a University of
Manchester Department of Computer Science Scholarship, and a South African Harry Cross-
ley Bursary.
2 inggscp@telkom.co.za
3 howard@cs.man.ac.uk

Electronic Notes in Theoretical Computer Science 128 (2005) 107–123

1571-0661/$ – see front matter © 2005 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.10.022

http://www.elsevier.com/locate/entcs


systems that can be verified is still heavily constrained by time and available
memory, and the development of techniques to alleviate the state explosion
problem remains an active area of research. One technique that has gained
significant interest recently is the parallelisation of model checking.

There were a few isolated publications on the parallelisation of model
checkers in the 1980s and 1990s and then Stern and Dill’s seminal paper for
parallel reachability analysis appeared in 1997 [17]. In the past three to four
years parallel model checking has gained considerable interest.

Much of the extant research has focused on implementations over dis-
tributed networks and the development of static partioning functions. Static
partitioning functions depend on the state and not on the distribution of the
workload. To the best of our knowledge the only algorithms that use a dynamic
partitioning function are the symbolic algorithm of Heyman et al. [12] and the
two algorithms based on Heyman et al.’s article [3,11]. In these algorithms the
memory balance is maintained by repartitioning the state space whenever the
memory becomes unbalanced. Initially only safety checking was parallelised,
but in the last few years the developement of parallel algorithms for liveness
checking increased and algorithms for checking LTL [2,6,16,15], CTL [7], and
the µ-calculus [5] have been developed. See [13] for a full bibliography. The
development of efficient parallel algorithms for liveness checking have been
less successful than for safety checking and very few parallel algorithms for
checking both liveness and safety properties achieve speedups.

We explored the parallelisation of model checking for shared-memory mul-
tiprocessor computers to evaluate its feasibility and identify any inherent dif-
ficulties or pitfalls when parallelising model checking for shared memory ar-
chitectures. In particular, the parallelisation of explicit-state on-the-fly model
checking was investigated for both safety and liveness properties and led to
the development of a parallel model checker for CTL*. This research has
shown the practicality and effective speedup of model checking using a shared-
memory architecture. The performance of the parallel algorithm was evalu-
ated via theoretical analysis and also via experimental analysis using a number
of prototypical models, including correctness properties of the parallel model
checker itself.

In our earlier paper, [14], we proposed a parallel algorithm for reachabil-
ity analaysis on a shared-memory architecture. In this paper we present a
parallel model checking algorithm for CTL* that uses the dynamic load bal-
ancing technique of the parallel reachability analysis algorithm described in
[14]. An overview of the parallel reachability analysis algorithm is given in the
next section. This is followed by a description of the serial automata-driven
game-theoretic algorithm for CTL* and its parallelisation in Sections 3 and 4.

C.P. Inggs, H. Barringer / Electronic Notes in Theoretical Computer Science 128 (2005) 107–123108



Download English Version:

https://daneshyari.com/en/article/10328885

Download Persian Version:

https://daneshyari.com/article/10328885

Daneshyari.com

https://daneshyari.com/en/article/10328885
https://daneshyari.com/article/10328885
https://daneshyari.com

