
Adaptive Detection of Design Flaws

Jochen Kreimer1 ,2

Research Group Programming Languages and Compilers
Department of Computer Science

University of Paderborn, Germany

Abstract

Criteria for software quality measurement depend on the application area. In large software systems
criteria like maintainability, comprehensibility and extensibility play an important role.
My aim is to identify design flaws in software systems automatically and thus to avoid “bad” —
incomprehensible, hardly expandable and changeable — program structures.
Depending on the perception and experience of the searching engineer, design flaws are interpreted
in a different way. I propose to combine known methods for finding design flaws on the basis of
metrics with machine learning mechanisms, such that design flaw detection is adaptable to different
views.
This paper presents the underlying method, describes an analysis tool for Java programs and shows
results of an initial case study.

Keywords: Design flaw, code smell, object-oriented design, software quality, refactoring, program
analysis, and machine learning.

1 Introduction

The object-oriented programming paradigm promises clearly structured, re-
usable and easily maintainable software. In practice, only very experienced
developers achieve this.

“All data should be hidden within its class” [36] is but one of the numerous
helpful pieces of advice of known mentors and successful practitioners of the

1 Email: jotte@uni-paderborn.de
2 Thank to M. Thies, P. Pfahler, U. Kastens, and the anonymous reviewers for their valu-
able comments.

Electronic Notes in Theoretical Computer Science 141 (2005) 117–136

1571-0661/$ – see front matter © 2005 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.02.059

mailto:jotte@uni-paderborn.de
http://www.elsevier.com/locate/entcs


object-oriented paradigm that should lead to a critical review of one’s own
program structures.

One valuable technique to improve software quality is manual software
inspection [10] [9]. It incorporates sifting source code, design and documen-
tation. This plays an important role for quality assurance in modern agile
development processes like Extreme Programming.

With inspection techniques, errors might be found before testing which
means that they are found in early development stages. Tool support is rec-
ommended for this time consuming task. Using a tool that analyzes software
automatically and repeatedly should achieve a constant high level of quality.

It is my aim to find errors in the design of software systems automatically
and therefore to avoid program structures that can not easily be extended and
changed.

Section 2 describes and classifies the notion of design flaws. Afterwards
section 3 introduces a method for adaptive detection of design flaws. Section 4
describes the prototype tool It’s Your Code (IYC) which implements that
method. The applied program analysis techniques are outlined in section 5.
The remaining sections describe results of an initial case study and provide an
overview of related work, as well as a conclusion and plans for future work.

2 Design Flaws

Design flaws are program properties that point out a potentially erroneous
design of a software system.

In the literature these are also referred to as “Design Heuristics” [36],
“Design Characteristics” [46] or “Bad Smells” [13]. The authors denote de-
sign flaws normally using metaphors and explain to software developers and
architects how to recognize and correct such erroneous software structures.

In addition Fowler [13] describes refactoring transformations which change
the internal program structure, but do not alter the observable behavior of
the program. These transformations lead to revised and simplified programs.
Fowler’s “Bad Smells” are design flaws that describe which program locations
may get improved by refactoring transformations. Examples of “Bad Smells”
are long methods, multipurpose classes, too many parameters or local variables
in a method, violation of data encapsulation, overuse of delegation or misuse
of inheritance.

J. Kreimer / Electronic Notes in Theoretical Computer Science 141 (2005) 117–136118



Download English Version:

https://daneshyari.com/en/article/10328907

Download Persian Version:

https://daneshyari.com/article/10328907

Daneshyari.com

https://daneshyari.com/en/article/10328907
https://daneshyari.com/article/10328907
https://daneshyari.com

