
Toward the Concept of Backtracking

Computation

Marija Kulaš1

FB Informatik, FernUniversität Hagen, Hagen, Germany

Abstract

This article proposes a new mathematical definition of the execution of pure Prolog, in the form
of axioms in a structural operational semantics. The main advantage of the model is its ease
in representing backtracking, due to the functionality of the transition relation and its converse.
Thus, forward and backward derivation steps are possible. A novel concept of stages is introduced,
as a refinement of final states, which captures the evolution of a backtracking computation. An
advantage over the traditional stack-of-stacks approaches is a modularity property. Finally, the
model combines the intuition of the traditional ‘Byrd box’ metaphor with a compact representation
of execution state, making it feasible to formulate and prove theorems about the model. In this
paper we introduce the model and state some useful properties.

Keywords: backtracking, Prolog, operational semantics

1 Motivation, aims and results

In this paper, we introduce S1:PP, a new operational semantics for pure Pro-
log, and establish some useful properties, aiming toward an algebraic defi-
nition of the concept of Prolog computation. On the way, we obtain some
new concepts useful for characterizing backtracking, but possibly also useful
for objects which evolve over time. Such an object is in logic programming
the goal, in its dynamic sense (‘this unique, run-time invocation of a Prolog
procedure’), as opposed to its static or syntactic sense (‘this goal formula’).

The goal is a basic concept of logic programming, but nevertheless one
which proved hard to grasp in a formal way, even in the case of pure Prolog.

1 Email: marija.kulas@fernuni-hagen.de

Electronic Notes in Theoretical Computer Science 128 (2005) 39–59

1571-0661/$ – see front matter © 2005 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.10.026

mailto:marija.kulas@fernumi-hagen.de
http://www.elsevier.com/locate/entcs


The problem is the possible evolution of ‘the’ goal through slightly different
identities, in case of a non-deterministic procedure.

For example, assume we pose the following query to a Prolog program:
p(X, Y), q(Y), fail. Assume two answers for p(X, Y), say p(a, Z) and p(b, 3). In
the static sense, we have only one goal q(Y), but dynamically we can have two
different goals: first q(Z), and if q(Z), fail terminates, then q(3). Both goals
have their own creation, lifetime of forward and backward execution, and
possible expiration. It is vital for an operational semantics of backtracking
to differentiate between these objects. Moreover, assume q/1 is recursive.
During the computation of e. g. the goal q(Z), we need to pay attention to all
the recursive invocations of q/1 as well, in order to know exactly where to go
after a failure. Are they all to be considered distinct objects as well, of the
same kind as the above two, q(Z) and q(3), and how to manage them anyway?

In the rest of this paper we proceed as follows. First a canonical form of
predicates is defined, into which the original pure Prolog program shall be
transformed. Then, in Section 3, a novel operational semantics of pure Prolog
is defined, in a structural operational manner. Throughout the Section 4 –
Section 7 we develop formal tools (concepts and theorems) suitable for char-
acterizing Prolog computation. This obviously includes defining in some way
or other the (dynamic) concept of the goal as well. We solved this problem
by means of stages, through which an initial event (representing the creation
of a goal) passes in the course of computation. Stages can be seen as a gener-
alization of the normal form idea, in the sense that stages are independent on
the context of computation, as shown in Section 7, but organized by macro
transitions. Starting from individual transitions as given in the model, simple
derivations (forward and backward) are built, which are the basis of simple
passes, and simple passes aggregate into composed passes. Finally, we show
in Section 8 how composed passes model Prolog computations.

Our approach can be seen as a formalization of the original Byrd model.
But there is an important detail: we extend the notion of a port, initially
conceived by Byrd for selected atoms, to general goal formulas. The shifting
of attention from atoms to general goal formulas proved to be a key idea and
made a very simple model possible. The model in its first version, called S:PP,
was proposed in [18]. But the handling of variables turned out to be difficult.
The new model S1:PP improves on that.

2 Preliminaries

Before it can be interpreted in our model, the original Prolog program has to be
transformed into a canonical form, the common single-clause representation.

M. Kulaš / Electronic Notes in Theoretical Computer Science 128 (2005) 39–5940



Download English Version:

https://daneshyari.com/en/article/10328939

Download Persian Version:

https://daneshyari.com/article/10328939

Daneshyari.com

https://daneshyari.com/en/article/10328939
https://daneshyari.com/article/10328939
https://daneshyari.com

