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Abstract

In a recent paper de Alfaro, Henzinger and Majumdar [8] observed that discounting successive
payments, the procedure that is employed in the classical stochastic game theory since the seminal
paper of Shapley [16], is also pertinent in the context of much more recent theory of stochastic
parity games [7,6,5] which were proposed as a tool for verification of probabilistic systems.
We show that, surprisingly perhaps, the particular discounting used in [8] is in fact very close to
the original ideas of Shapley. This observation allows to realize that the specific discounting of [8]
suffers in fact from some needless restrictions. We advocate that dropping the constraints imposed
in [8] leads to a more general and elegant theory that includes parity and mean payoff games as
particular limit cases.
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1 Stochastic Games

The proper framework for our presentation are stochastic games introduced
by Shapley [16].

Such games are played by two players 4 : the player 0 and the player 1. We

1 This research was supported by European Research Training Network: Games and Au-
tomata for Synthesis and Validation
2 Email: hugo@liafa.jussieu.fr
3 Email: zielonka@liafa.jussieu.fr
4 We consider here exclusively two players’ zero sum games even if some definitions can
obviously be stated in the broader framework of many players non zero sum games.
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are given a finite set 5 of states S, for each state s ∈ S we have two finite sets
of actions : A(s) – the actions of player 0 and B(s) the set of actions of player
1. If the system is at the state s ∈ S both players choose simultaneously and
independently actions a ∈ A(s) and b ∈ B(s) respectively and the system goes
to a new state s′ with the probability p(s′ | s, a, b) that, as we can see, depends
on the current state and the chosen actions. We suppose that the conditional
probabilities are correctly and consistently defined, i.e., 0 ≤ p(s′ | s, a, b) ≤ 1
and

∑
s′∈S p(s′ | s, a, b) = 1.

A play in such a game is an infinite sequence

p = (s0, a0, b0), (s1, a1, b1), (s2, a2, b2), . . .

of triples (si, ai, bi) belonging to the set

T = {(s, a, b) | s ∈ S and a ∈ A(s), b ∈ B(s) }

whose elements will be called transitions. Intuitively, the play p describes the
sequence of the visited states and the actions chosen by both players at each
stage i of the game.

A payoff mapping u maps each possible play p to a real number u(p) —
the payment received by player 0 from player 1 resulting from the play p. The
obvious aim of 0 is to play in a way that maximizes his gain while player 1
tries to minimize his loss. Both players use strategies, that indicate how they
should play at each stage of a game, i.e., which available action will be chosen.
In general the choice of the next action can depend on the past history and
can be probabilistic in nature, i.e., strategies provide a conditional probability
distribution over the actions that are available at the current stage, see any of
the following textbooks and monographs [18,10,19,17] for a formal definition.
Fixing the strategies σ of player 0 and τ of player 1 and an initial state s
yields a unique probability measure µs,σ,τ over the Borel sets of plays starting
at s. Now we can state more formally that the aim of player 0 is to choose, if
possible, a strategy maximizing his expected payment

Es,σ,τ (u) =

∫
u(p)µs,σ,τ(dp)

where the integral is taken over the set of all plays p starting at s (we assume
tacitly that u is integrable).

Varying the payment mapping u we obtain different classes of stochastic
games.

5 Finiteness of the state space is not really necessary.
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