
Invariant-Driven Strategies for Maude 1

Francisco Durán2 Manuel Roldán3 Antonio Vallecillo4

Dpto. de Lenguajes y Ciencias de la Computación
Universidad de Málaga

Málaga, Spain

Abstract

We propose generic invariant-driven strategies that control the execution of systems by guarantee-
ing that the given invariants are satisfied. Our strategies are generic in the sense that they are
parameterized by the system whose execution they control, by the logic in which the invariants are
expressed, and by the invariants themselves. We illustrate the use of the strategies in the case of
invariants expressed in propositional logic. However, the good properties of Maude as a logical and
semantic framework, in which many different logics and formalisms can be expressed and executed
allow us to use other logics as parameter of our strategies.

Keywords: Execution strategies, Maude, rewriting logic, reflection.

1 Introduction

To deal with nonterminating and nonconfluent systems, we need good ways
of controlling the rewriting inference process. In this line, different languages
offer different mechanisms, including approaches based on metaprogramming,
like Maude [2,3], or on strategy languages, like ELAN [1]. However, although
the separation of logic and control greatly simplifies such a task, these mecha-
nisms are sometimes hard to use, specially for beginners, and usually compro-
mise fundamental properties like extensibility, reusability, and maintainability.

1 Partially supported by projects TIC 2001-2705-C03-02 and 2002-04309-C02-02
2 Email: duran@lcc.uma.es
3 Email: mrc@lcc.uma.es
4 Email: av@lcc.uma.es

Electronic Notes in Theoretical Computer Science 124 (2005) 17–28

1571-0661/$ – see front matter © 2005 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.11.018

mailto:duran@lcc.uma.es
mailto:mrc@lcc.uma.es
mailto:av@lcc.uma.es
http://www.elsevier.com/locate/entcs


Formalisms like Z and UML suggest an interesting alternative, since they
allow to define invariants or constraints as part of the system specifications.
Although executing or simulating Z specifications may be hard, we can still
find tools like Possum [9] or Jaza [12], which can do a reasonable simulation
of such specifications. We find something somehow similar in UML, where,
by specifying OCL constraints on our specifications, they can be made exe-
cutable [13].

The execution or simulation of specifications with constraining invariants
is typically based on integrating somehow the invariants into the system code.
However, such an integration is clearly unsatisfactory: the invariants get lost
amidst the code, and become difficult to locate, trace, and maintain. More-
over, the programs and the invariants to be satisfied on them are usually
expressed in different formalisms, and live at different levels of abstraction:
invariants are defined on programs. Therefore, it is interesting to have some
way of expressing them separately, thus avoiding the mixing of invariants and
code.

Maude does not provide direct support for expressing execution invari-
ants. However, it does provide reflective capabilities and support to control
the execution process, being also an excellent tool in which to create exe-
cutable environments for various logics and models of computation [4]. Thus,
it turns out to be a very good candidate for giving support to different types
of invariants, which may be expressed in different formalisms.

In this paper we propose generic invariant-driven strategies to control the
execution of systems by guaranteeing that the given invariants are always
satisfied. Our strategies are generic in the sense that they are parameterized by
the system whose execution they control, by the logic in which the invariants
are expressed, and by the invariants themselves. The good properties of Maude
as a logical and semantic framework [8], in which many different logics and
formalisms can be expressed and executed, allow us to say that other logics
and formalisms may be used as parameters of our strategies. We will use in
this paper the case of propositional logic, although we have also experimented
with future time linear temporal logic.

The paper is structured as follows. Section 2 serves as a brief introduction
to rewriting logic and Maude. Section 3 introduces the definition of strate-
gies in Maude, and serves as a basis for the introduction of invariant-guided
strategies in Section 4. Section 5 describes as an example the case of invari-
ants expressed using propositional calculus. Finally, Section 6 draws some
conclusions.

F. Durán et al. / Electronic Notes in Theoretical Computer Science 124 (2005) 17–2818



Download English Version:

https://daneshyari.com/en/article/10328979

Download Persian Version:

https://daneshyari.com/article/10328979

Daneshyari.com

https://daneshyari.com/en/article/10328979
https://daneshyari.com/article/10328979
https://daneshyari.com

