
Programmable Rewriting Strategies in Haskell

— White Paper —

Ralf Lämmel 1,2

1 Vrije Universiteit, Amsterdam
2 Centrum voor Wiskunde en Informatica, Amsterdam

Abstract

Programmable rewriting strategies provide a valuable tool for implementing traversal functional-
ity in grammar-driven (or schema-driven) tools. The working Haskell programmer has access to
programmable rewriting strategies via two similar options: (i) the Strafunski bundle for generic
functional programming and language processing, and (ii) the “Scrap Your Boilerplate” approach
to generic functional programming. Basic rewrite steps are encoded as monomorphic functions
on datatypes. Rewriting strategies are polymorphic functions composed from appropriate basic
strategy combinators.

We will briefly review programmable rewriting strategies in Haskell. We will address the following
questions:

• What are the merits of Haskellish strategies?

• What is the relation between strategic programming and generic programming?

• What are the challenges for future work on functional strategies?

Keywords: Rewrite startegies, programming languages, Haskell, functional programming

1 Strategic programming

Our use of the term ‘strategy’ originates from the work on programmable
rewriting strategies for term rewriting à la Stratego [30,40,38]. Strategic pro-

� This white paper served as an invited position paper for the 4th International Work-
shop on Reduction Strategies in Rewriting and Programming (WRS 2004), June 2, 2004,
Aachen, Germany. The paper was presented at the WRS 2004 round table “Strategies in
programming languages today”.

Electronic Notes in Theoretical Computer Science 124 (2005) 101–112

1571-0661/$ – see front matter © 2005 Published by Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.11.021

http://www.elsevier.com/locate/entcs


grammers can separate basic rewrite steps from the overall scheme of traversal
and evaluation. These schemes are programmable by themselves! There are
one-layer traversal primitives that facilitate the definition of whatever recur-
sion pattern for traversal. There are further, perhaps less surprising, basic
combinators for controlling the evaluation in terms of the order of steps, the
choices to be made, the fixpoints to be computed, and others. An extended
exposition of what we call ‘strategic programming’ can be found in [24].

Related forms of programmable strategies permeate computer science. For
instance, evaluation strategies without any traversal control are useful on their
own in rewriting [7,4]. In theorem proving, one uses a sort of strategies as proof
tactics and tacticals [33]. In parallel functional programming, one uses a sort
of strategies to synthesise parallel programs [36].

2 Functional strategies in Strafunski

The Strafunski project [1,27,19,25,26,28] incarnated programmable rewriting
strategies for functional programming, namely for Haskell. Strategies are es-
sentially polymorphic functions on datatypes (or ‘term types’). The basic
rewrite steps are readily specified as monomorphic functions on datatypes.
For instance, the following rewrite step encodes some sort of constant elimi-
nation for arithmetic expressions:

const_elim :: Expr -> Maybe Expr
const_elim ((Const 0) ‘Plus‘ x) = Just x
const_elim _ = Nothing

In concrete syntax, and without Haskellish noise, this reads as “0 + x -> x”.
In the example, we wrap the result of the rewrite step in the Maybe monad,
which allows us to observe success vs. failure of a rewrite step. We can use
stacked monads (rather than just Maybe) in rewrite steps and strategies. This
allows us to deal with state, environment, nondeterminism, and backtracking.

In Strafunski, there are two (monadic) types of strategies:

• TP — type-preserving strategies: domain and co-domain coincide.

• TU — type-unifying strategies: all datatypes are mapped to one result type.

Strafunski ’s strategy library is based on primitive strategy combinators:

• idTP — the identity function.

• failTP — the always failing strategy.

• adhocTP — update strategy in one type.

• seqTP — sequential composition.

• choiceTP — left-biased choice.

R. Lämmel / Electronic Notes in Theoretical Computer Science 124 (2005) 101–112102



Download English Version:

https://daneshyari.com/en/article/10328986

Download Persian Version:

https://daneshyari.com/article/10328986

Daneshyari.com

https://daneshyari.com/en/article/10328986
https://daneshyari.com/article/10328986
https://daneshyari.com

