
A Proof Calculus for Natural Semantics

Based on Greatest Fixed Point Semantics

Sabine Glesner

Institute for Program Structures and Data Organization
University of Karlsruhe, 76128 Karlsruhe, Germany
http: // www. info. uni-karlsruhe. de/ ~glesner

Abstract

Formal semantics of programming languages needs to model the potentially infinite state transi-
tion behavior of programs as well as the computation of their final results simultaneously. This
requirement is essential in correctness proofs for compilers. We show that a greatest fixed point
interpretation of natural semantics is able to model both aspects equally well. Technically, we
infer this interpretation of natural semantics based on an easily omprehensible introduction to the
dual definition and proof principles of induction and coinduction. Furthermore, we develop a proof
calculus based on it and demonstrate its application for two typical problems.

Keywords: Formal semantics, formal compiler correctness, natural semantics,
coinductive/greatest fixed point interpretation, proof calculus.

1 The Need for Greatest Fixed Point Semantics

Programming language semantics incorporates two dual aspects: The execu-
tion of a program triggers a potentially infinite state transition sequence. If
this transition sequence terminates, then it defines the final result of program
execution. A formalism for the semantics of programming languages should
model both aspects simultaneously. If the execution of a program terminates,
then its final result should be defined based on the finite state transition se-
quence. Moreover, a semantics formalism should specify a more meaningful
semantics than just “undefined” for non-terminating programs. This require-
ment is essential in practical applications. Many programs (e.g. operating sys-
tems, data bases, control software in embedded systems or reactive systems)
are not intended to terminate while still having a very special semantics.

Electronic Notes in Theoretical Computer Science 132 (2005) 73–93

1571-0661/$ – see front matter © 2005 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.02.011

http://www.info.uni-karlsruhe.de/~glesner
http://www.elsevier.com/locate/entcs


We show that a greatest fixed point interpretation of natural semantics is
able to model both aspects simultaneously. This greatest fixed point inter-
pretation gives rise to a proof calculus consisting of inductive and coinductive
proof rules. It can be used in the formal reasoning about programming lan-
guages. As examples, we consider two applications. The first concerns the
correctness proofs of translations, e.g. in compilers. Thereby one needs to
prove that the observable behavior of the translated programs is preserved.
This is a stronger requirement than just preserving their final results. The
second example regards proofs for properties of programming languages, e.g.
type safety. They need to consider terminating and non-terminating programs.

Our proof calculus is based on the well-established trend that a combi-
nation of algebraic and coalgebraic methods can be used successfully in the
specification of and reasoning about programming languages, especially for
potentially non-terminating processes. We restate the corresponding proof
principles of induction and coinduction in a simple form which is yet powerful
enough to model deterministic, possibly infinite computations. We describe
the two dual definition and proof principles, in contrast to the common lit-
erature utilizing category theory, in a purely set-theoretic and easily compre-
hensible manner. We show that the state transition behavior of programs
must be defined coinductively and that the final result is defined inductively
on top of it. While automated theorem provers, e.g. Isabelle [13], have the
potential to reason coinductively, the standard practice does not use it. All
automated as well as “paper and pencil” proofs based on natural semantics
exploit induction and, hence, do only hold for terminating computations. The
results of this paper demonstrate that this is not sufficient and can easily be
replaced by coinductive reasoning.

The Insufficiency of Induction Proofs
Let us start with a motivation why induction is not the appropriate proof

principle for infinite computations.

Consider one of the well-known proof rules of the Hoare cal-{P}
proc p

· · ·
{P}
p
{Q}

· · ·
endproc
{Q}

culus [6]. If one wants to prove that a recursive procedure p

is correct wrt. a precondition P and a postcondition Q , then
one assumes that for all recursive calls of p within the body
of p, precondition P and postcondition Q hold. If p always
terminates, then this is an induction proof. The recursion
depth of the inner calls is always smaller than the recursion

depth of p itself. If the procedure p does not terminate, it is no longer a valid
induction proof. The state transition sequence in the inner procedure’s body
is infinitely long as well as the state transition sequence of the outer proce-
dure. Hence, we do not have an induction premise about a strictly smaller

S. Glesner / Electronic Notes in Theoretical Computer Science 132 (2005) 73–9374



Download	English	Version:

https://daneshyari.com/en/article/10329288

Download	Persian	Version:

https://daneshyari.com/article/10329288

Daneshyari.com

https://daneshyari.com/en/article/10329288
https://daneshyari.com/article/10329288
https://daneshyari.com/

