Available online at www.sciencedirect.com

SCIENCE(lenECT'- Electronic Notes in
Theoretical Computer
Science

ELS ER Electronic Notes in Theoretical Computer Science 137 (2005) 47-68
www.elsevier.com/locate/entcs

Dealing Denotationally With Stream-based
Communication

Mercedes Hidalgo-Herrero'

Dept. Diddctica de las Matemdaticas
Facultad de Educacion, Universidad Complutense de Madrid.
Madrid, Spain

Yolanda Ortega-Mallén' *

Dept. Sistemas Informdticos y Programacion
Facultad de CC. Matemdticas, Universidad Complutense de Madrid.
Madrid, Spain

Abstract

We define a denotational semantics for a kernel-calculus of the parallel functional language Eden.
We choose continuations to deal with side-effects (process creation and communication) in a lazy
context. The calculus includes streams for communication, and their modelization by a denotational
semantics is not direct because a stream may be infinite.

Keywords: Denotational semantics, continuation semantics, laziness, parallel programming,
functional programming, Eden.

1 Introduction

Assuming that parallelism and distribution are efficiency improvements in pro-
gramming, the main goal for designing Eden [7] was to profit from both of
them in a functional paradigm. Eden extends the functional language Haskell

1 Work partially supported by the Spanish project TIC2003-01000.
2 E-mail: mhidalgo@edu.ucn.es
3 E-mail: yolanda@sip.ucm.es

1571-0661/$ — see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.entcs.2005.01.039

mailto:mhidalgo@edu.ucm.es
file:yolanda@sip.ucm.es
http://www.elsevier.com/locate/entcs

48 M. Hidalgo-Herrero, Y. Ortega-Mallén / Electron. Notes Theor. Comput. Sci. 137 (2005) 47-68

[10] with constructs for defining explicit processes, so that the Eden program-
mer controls —from a higher level of abstraction— the process granularity, the
data distribution, and the process topology. This circumstance is endorsed by
the fact that the programmer has not to worry about synchronization tasks.

The language Eden comprises two layers: the functional level, or computa-
tional model, and the processes level, or coordination model [1]. The compu-
tational model is the lazy functional language Haskell, while the coordination
level includes the following features:

Process abstractions: expressions that define the general behaviour of a process
in a purely functional way.

Process creations: the application of some process abstraction to a particular
group of expressions produces the creation of a new process to compute the
result of that application.

Interprocess communications: these are asynchronous and implicit, since the
programmer does not need to specify the message passing. Communications
in Eden are not restricted to the transmission of a single value, processes
can communicate values in a stream-like manner.

Eden also includes some constructs to model reactive systems:

Dynamic creation of channels: without this possibility communications are
only hierarchical, i.e. from parent to child and viceversa. Dynamic channels
facilitate the creation of more complex communication topologies [9].

Non-determinism: in order to model communications from many-to-one Eden
introduces a predefined process, merge, whose inputs are several streams
while its output is just one stream; the latter is the non-deterministic merge
of the elements of the former.

The introduction of parallelism leads to a certain loss of laziness:

e Processes are eagerly created even if the output of the new process has not
still been demanded.

¢ Communication is achieved even without demand; whenever a process is
created, it is initiated the evaluation of the expressions which will yield the
values to be communicated through its channels.

In general, the evaluation of an expression comes to an end when a weak
head normal form (whnf) is reached. However, when this value has to be
communicated and it is not a A-abstraction, it will be evaluated to normal
form. On the one hand, the head of a stream is strict, so that it is evaluated
until a communicable value is obtained. On the other hand, the whole stream
evaluation is lazy, allowing in this way the existence of potentially infinite

Download English Version:

https://daneshyari.com/en/article/10329403

Download Persian Version:

https://daneshyari.com/article/10329403

Daneshyari.com

https://daneshyari.com/en/article/10329403
https://daneshyari.com/article/10329403
https://daneshyari.com/

