
From UML Models

to Graph Transformation Systems

Paul Ziemann1 Karsten Hölscher2 Martin Gogolla3

Department of Computer Science
University of Bremen
Bremen, Germany

Abstract

In this paper we present an approach that allows to validate properties of UML models. The
approach is based on an integrated semantics for central parts of the UML. We formally cover
UML use case, class, object, statechart, collaboration, and sequence diagrams. Additionally full
OCL is supported in the common UML fashion. Our semantics is based on the translation of a
UML model into a graph transformation system consisting of graph transformation rules and a
working graph that represents the system state. By applying the rules on the working graph, the
evolution of the modeled system is simulated.

Keywords: Graph transformation, UML semantics, validation, CASE tool

1 Introduction

Today the Unified Modeling Language (UML) is widely accepted as a standard
for modeling object-oriented software systems. UML is a graphical language
providing different diagram types for describing particular aspects of software
artifacts. The syntax of these diagrams is defined by means of a metamodel
in [12], notated as class diagrams. However this approach is semi-formal,
since the class diagram itself is defined in a cyclic way by the metamodel.

1 Email: ziemann@informatik.uni-bremen.de
2 Email: hoelscher@informatik.uni-bremen.de
3 Email: gogolla@informatik.uni-bremen.de

Electronic Notes in Theoretical Computer Science 127 (2005) 17–33

1571-0661/$ – see front matter © 2005 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.10.025

mailto:ziemann@informatik.uni-bremen.de
mailto:hoelscher@informatik.uni-bremen.de
mailto:gogolla@informatik.uni-bremen.de
http://www.elsevier.com/locate/entcs


Furthermore the semantics of UML diagrams is only expressed in natural lan-
guage. The graphical notation is enhanced by the Object Constraint Language
(OCL), which permits to formulate constraints in a textual way that cannot
be expressed by the diagrams. OCL is again semi-formally defined in [12].
A formal syntax and semantics for UML class diagrams as well as OCL has
been introduced in [13], which is also included in the accepted OCL 2.0 OMG
submission [1].

In this paper we present an integrated formal semantics not only for class
diagrams but for further basic diagram types: use case, object, statechart and
interaction diagrams. We stick to UML 1.5 but UML 2.0 likewise includes
the UML concepts covered by us, albeit some details and the naming have
changed in some cases. In particular, collaboration diagrams are called com-
munication diagrams in UML 2.0. The new integrated semantics is formalized
employing the concepts of graph transformation, which is a well-developed
field (cf. [15], [4], [5]). We are not aware of a formal approach handling this
collection of UML diagrams, in particular the formal incorporation of use
cases is new (in [17] use cases are described precisely by so-called operation
schemas including OCL pre- and postconditions but the connection to other
UML diagrams is left open).

Our approach provides a framework for an automatic translation of a UML
model into a graph transformation system. The UML model may consist of
the mentioned diagram types and can include OCL expressions. The graph
transformation system comprises a set of graph transformation rules and a
so-called working graph, hence called system state graph. As the name may
suggest, the system state graph represents the current state of the modeled
system. The graph transformation rules modify this state step by step, thus
simulating a run through the modeled system.

In contrast to most work on graph transformation, we employ an enhanced
approach, which allows OCL expressions in rules. We combine the advantages
of two worlds: the operational graph transformation world and the logic-
based OCL world. On the one hand graph transformations allow to handle
complex issues by depicting and modifying them using more intuitive graphical
representations. On the other hand, although it is theoretically possible to
represent every aspect in the graphical structure, the additional power to use
OCL as a textual notation leads to the benefit of even more compact graphs in
most cases. In our approach OCL expressions navigating in the current system
state are used as application conditions, which decide whether a certain rule
may or may not be applied. Furthermore OCL is used in attribute expressions
in the right-hand side of graph transformation rules. The modeler can also
utilize OCL for querying the current state of the modeled system.

P. Ziemann et al. / Electronic Notes in Theoretical Computer Science 127 (2005) 17–3318



Download English Version:

https://daneshyari.com/en/article/10329692

Download Persian Version:

https://daneshyari.com/article/10329692

Daneshyari.com

https://daneshyari.com/en/article/10329692
https://daneshyari.com/article/10329692
https://daneshyari.com

