Available online at www.sciencedirect.com

SCIENCE(d[nnEc'r- Electronic Notes in
Theoretical Computer

Science

ELSEVIER Electronic Notes in Theoretical Computer Science 127 (2005) 113128
www.elsevier.com/locate/entcs

Detecting Structural Refactoring Conflicts
Using Critical Pair Analysis

Tom Mens!

Software Engineering Lab
Université de Mons-Hainaut
B-7000 Mons, Belgium

Gabriele Taentzer and Olga Runge?

Technische Universitat Berlin
D-10587 Berlin, Germany

Abstract

Refactorings are program transformations that improve the software structure while preserving the
external behaviour. In spite of this very useful property, refactorings can still give rise to structural
conflicts when parallel evolutions to the same software are made by different developers. This paper
explores this problem of structural evolution conflicts in a formal way by using graph transformation
and critical pair analysis. Based on experiments carried out in the graph transformation tool AGG,
we show how this formalism can be exploited to detect and resolve refactoring conflicts.

Keywords: refactoring, restructuring, graph transformation, critical pair analysis, evolution
conflicts, parallel changes

1 Introduction

Refactoring is a commonly accepted technique to improve the structure of
object-oriented software [2]. Nevertheless, there are still a number of problems
if we want to apply this technique in a collaborative setting, where different
software developers can make changes to the software in parallel.

! Email:tom.mens@umh.ac.be
2 Email:gabi@cs.tu-berlin.de

1571-0661/$ — see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.entcs.2004.08.038


mailto:tom.mens@umh.ac.be
mailto:gabi@cs.tu-berlin.de
http://www.elsevier.com/locate/entcs

114 T. Mens et al. / Electronic Notes in Theoretical Computer Science 127 (2005) 113-128

To illustrate these problems, consider the scenario of a large software de-
velopment team, where two developers independently decide to refactor the
same software. It is possible that these parallel refactorings are incompatible,
in the sense that they cannot be combined together. As an example, assume
that a Move Variable refactoring and an FEncapsulate Variable refactoring are
applied in parallel to the same variable in the same class. Both refactorings
are clearly in conflict since they cannot be serialised as they both affect the
same variable in different incompatible ways.

It is also possible that two parallel refactorings can only be combined in a
particular order. As an example, assume that a Rename Variable refactoring
and an Encapsulate Variable refactoring are applied in parallel to the same
variable in the same class. One can decide to rename the variable first, and
then encapsulate it, but not the other way round. The reason is that the
encapsulation introduces an auxiliary setter and getter method whose names
rely on the variable name.

To address the problems illustrated above, we propose to take a formal
approach based on graph transformation and critical pair analysis [1,4,5]. We
will perform a feasibility study using the AGG tool. As such, the contribution
of our paper will be twofold:

e to show the feasibility of the technique of critical pair analysis for a new
practical application;

* to support refactoring tool developers with a formal means to analyse the
consistency of refactoring suites, and to allow them to identify unanticipated
dependencies between pairs of refactorings.

2 The AGG tool

We decided to use the tool AGG (see http://tfs.cs.tu-berlin.de/agg) for
our experiments. It is the only graph transformation tool we are aware of that
supports critical pair analysis, a crucial ingredient of our approach towards
the detection of refactoring conflicts.

2.1 Specifying graph transformations

To reason about object-oriented software evolution, we specify object-oriented
programs as graphs, that have to respect the constraints specified by a type
graph. This type graph acts as an object-oriented metamodel. The metamodel
we expressed in AGG is shown in Figure 1. It expresses the basic object-
oriented concepts (such as classes, methods and variables), their attributes
(such as name and visibility), and their relationships (such as inheritance,



Download English Version:

https://daneshyari.com/en/article/10329721

Download Persian Version:

https://daneshyari.com/article/10329721

Daneshyari.com


https://daneshyari.com/en/article/10329721
https://daneshyari.com/article/10329721
https://daneshyari.com/

