
Extending Security Protocol Analysis: New

Challenges 1

Mike Bond2 Jolyon Clulow3

Computer Laboratory
University of Cambridge

Cambridge, UK.

Abstract

We argue that formal analysis tools for security protocols are not achieving their full potential,
and give only limited aid to designers of more complex modern protocols, protocols in constrained
environments, and security APIs. We believe that typical assumptions such as perfect encryption
can and must be relaxed, while other threats, including the partial leakage of information, must be
considered if formal tools are to continue to be useful and gain widespread, real world utilisation.
Using simple example protocols, we illustrate a number of attacks that are vital to avoid in security
API design, but that have yet to be modelled using a formal analysis tool. We seek to extract
the basic ideas behind these attacks and package them into a wish list of functionality for future
research and tool development.

Keywords: Security APIs, Formal Methods, Protocol Analysis, Perfect Encryption, Information
Leakage

1 Introduction

Security protocols have been designed, studied and attacked for over thirty
years. Today, formal analysis is becoming a popular tool for assisting in the
design process. However, the assumptions that formal tools make and the
restrictions they put on the description and analysis of behaviour conspire to

1 The authors wish to acknowledge the generous funding of the CMI Institute and the Cecil
Renaud Educational and Charitable Trust.
2 Email: Mike.Bond@cl.cam.ac.uk
3 Email: Jolyon.Clulow@cl.cam.ac.uk

Electronic Notes in Theoretical Computer Science 125 (2005) 13–24

1571-0661/$ – see front matter © 2005 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.09.036

mailto:Mike.Bond@cl.cam.ac.uk
file:Jolyon.Clulow@cl.cam.ac.uk
http://www.elsevier.com/locate/entcs


limit their scope – preventing their application to harder protocol design prob-
lems of today. In particular, the design of security APIs as well as conventional
protocol design in constrained environments (such as within embedded sys-
tems) cannot benefit fully from the existing tools because of these impractical
assumptions and restrictions. While designers can achieve security through
systematic application of rules of thumb for fulfilling the assumptions, the
results tend to be over-engineered and impractical to deploy. Instead, we pro-
pose that the time has come to extend these tools to relax the assumptions
on the models they analyse.

We describe some well-known mistakes that need to be avoided in good
protocol and API designs, yet which cannot be reasoned about in the abstract
models used by formal tools. These mistakes are of particular significance
as they are regularly discovered within security APIs, but are illustrated for
simplicity with example security protocols.

We believe that formal reasoning about many of these lower-level attacks
is possible, and present this as a challenge for the formal methods community
to adapt and extend their tools, to assure their continued usage and eventual
widespread acceptance into the design process.

2 Analysing Protocols with Formal Methods

Numerous tools and techniques for formal analysis of security protocols exist;
they can be broadly split into model checkers, theorem provers and formal
logics.

• Model checkers explore a state space, examining methodically whether cer-
tain requirements hold in each state of the model. Some can also reason
about equivalence between state space models, or use mathematical tech-
niques to reason about entire sets of states simultaneously. Theoretically,
they can examine the entire state space and can give a similar assurance
of correctness as that provided by a theorem prover (in practise however,
the problems set by users are often too hard and defeat analysis, or are
deliberately simplified to ensure solubility).

• Theorem provers, in contrast, search at a higher level of abstraction for
chains of logic that constitute a compelling proof that a particular property
always holds. Alternatively, they may find a counter-example in the process.
Various proof search strategies are used, often based on the basic resolution
strategy proposed by Robinson [19].

• Finally, formal logics provide the user with notation and precise definitions
of properties, which help the user to perform intuitive reasoning more rig-

M. Bond, J. Clulow / Electronic Notes in Theoretical Computer Science 125 (2005) 13–2414



Download English Version:

https://daneshyari.com/en/article/10329767

Download Persian Version:

https://daneshyari.com/article/10329767

Daneshyari.com

https://daneshyari.com/en/article/10329767
https://daneshyari.com/article/10329767
https://daneshyari.com

