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(s,S) policy are low.

Non-stationary stochastic demands are very common in industrial settings with seasonal patterns,
trends, business cycles, and limited-life items. In such cases, the optimal inventory control policies are
also non-stationary. However, due to high computational complexity, non-stationary inventory policies
are not usually preferred in real-life applications. In this paper, we investigate the cost of using a
stationary policy as an approximation to the optimal non-stationary one. Our numerical study points to
two important results: (i) Using stationary policies can be very expensive depending on the magnitude
of demand variability. (ii) Stationary policies may be efficient approximations to optimal non-stationary
policies when demand information contains high uncertainty, setup costs are high and penalty costs

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Stochastic inventory control systems have been studied
extensively under various assumptions on demand. Nevertheless,
the literature reflects a clear dichotomy between inventory
models with stationary and non-stationary demands. The former
assumes a steady demand process, whereas the latter assumes a
demand process that varies in time. Strictly speaking, most
practical demand patterns are non-stationary [1]. Furthermore, as
product life cycles are becoming shorter, demand that evolves
over the life of the product never follows stationary patterns [2].
For instance, electronic products, which have relatively short life
cycle, generally follow non-stationary demand patterns (see e.g.
[2,3]). Moreover, many authors have reported that providers of
components and subassemblies often face unstable customer
orders (see e.g. [4,5]).

One major theme in the continuing development of inventory
theory is the incorporation of more realistic demand assumptions
into inventory models. Consequently, one would expect increasing
number of studies concerned with non-stationary inventory models.
However, the literature on non-stationary demand is rather limited,
whereas it is vast for stationary demand. A topic search (title,
abstract and keywords) on the ISI Web of Knowledge, since the year
2000, using the terms stationary and inventory gives 221 published
papers, whilst this figure is only 29 for the terms non-stationary and
inventory. It is obvious that, there is also a large number of papers

* Corresponding author. Tel.: +1662 325 7625.
E-mail address: beksioglu@ise.msstate.edu (B. Eksioglu).

0305-0483/$ - see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.0mega.2010.09.005

assuming stationary demand without using the term stationary. This
disparity is mainly due to the ill structure of non-stationary
problems from a theoretical point of view and the complexity
inherent in non-stationary models from a computational point
of view. Silver et al. [6] point out that non-stationary demand is
too complicated for routine use in practice. Furthermore, as
Kurawarwala and Matsuo [7] stated, the unique characteristics of
non-stationary demand preclude the use of traditional forecasting
methods not designed for this environment and raise a need for
tailor-made forecasting methods. Consequently, stationary policies
have always been preferred to non-stationary policies in many real-
life applications for the sake of their relative simplicity even if the
underlying actual demand is non-stationary.

In spite of all the above mentioned issues related to non-
stationary inventory policies, when demand is non-stationary, a
stationary policy is an approximation to the optimal non-
stationary one, and hence, is sub-optimal with respect to total
expected cost. This research investigates the magnitude of this
sub-optimality under various settings. To the best of our knowl-
edge, no work has been done that can be used as a guideline to
compute the cost of using stationary policies when demand is
non-stationary. We establish our analysis by using the (s,S)
inventory control policy. The (s,S) policy is proven to be optimal
both in stationary and non-stationary demand cases, and there-
fore, constitutes an inherent frame of reference. Our contribution
is two-fold. First, we show that using stationary policies can be
very expensive depending on the extent of demand variability as
well as other factors. Second, we provide some insight on cases
where stationary models provide good approximations to non-
stationary models.
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In the remainder of this section, we concisely review related
literature. In Section 2, we give the key assumptions of the
inventory problem considered, and present algorithms used to
compute the stationary and the non-stationary (s,S) policies. In
Section 3, we present the experimental design and computational
results. Finally, in Section 4, we draw general conclusions and
provide some managerial insights.

Most of the research in inventory literature assumes either a
stationary or a non-stationary demand, and develop models and
policies accordingly. Therefore, it is difficult to refer to any
research addressing the cost performance of stationary policies
when demand is non-stationary. However, we believe that it is
necessary to briefly discuss the key literature in order to ease the
exposition of the remaining sections.

One of the most exciting developments in the inventory theory
is Scarf’s [8] proof of the optimality of (s,S) policies. (s,S) policies
are characterized by two critical numbers s, and S,, for each period
n, such that, the inventory position is replenished up to a target
level S, whenever the inventory position at the beginning of the
period is lower than (or equal to) a re-order level s,. Scarf [8]
showed the optimal value function satisfies a condition, which he
called K-convexity, and provided a procedure for establishing the
optimal policy parameters via a recursive function. Scarf’s
formulation required extensive computational power beyond
the limitations of its time. As a matter of fact, there was no
known way of computing policy parameters at that time [9].
Following Scarf [8], Iglehart [10] demonstrated the optimality of
(s,S) policies in infinite horizon inventory problems with sta-
tionary demand. He showed that optimal policy parameters
converge to two limit values s and S in this case. Iglehart’s work
has been followed by a large number of researchers (see e.g.
[11-17]) aiming at efficiently computing optimal policy para-
meters using the stationary analysis approach. However, not
much work has been done for computing non-stationary (s,S)
policies. A few authors addressed the inventory problem with
non-stationary demands. Some of these work focused on alter-
native inventory control policies (see e.g. [18-21]), whereas some
others proposed heuristics for computing near-optimal (s,S)
parameters (see e.g. [22]). In this paper, we consider the inventory
problem addressed in Scarf [8] and investigate the cost efficiency
of stationary and non-stationary inventory policies.

2. Problem definition and solution procedures

In this section, we provide the grounds to investigate the cost
performance of stationary policies under non-stationary demand.
We establish our analysis by evaluating the best possible
stationary policy, i.e. the policy providing the minimal cost for
the given non-stationary demand, against the best non-stationary
policy. We use the (s,S) policy as a frame of reference since it is
proven to be optimal both in stationary and non-stationary
demand cases.

Throughout the paper it is assumed that the planning horizon
consists of N periods. The demand, d,, in period n, is a random
variable with known probability density function, g,(d,), and
occurs instantaneously at the beginning of the period. The
demand rate may vary from period to period. Demands in
different time periods are independent. A fixed holding cost h is
incurred on any unit carried in inventory from one period to the
next. Demands occurring when the system is out of stock are
backordered, and satisfied immediately when the next replenish-
ment order arrives. A fixed shortage cost p is incurred for each
unit of demand backordered. A fixed procurement (ordering or
set-up) cost K is incurred each time a replenishment order is
placed. For convenience, without loss of generality, the initial

inventory level and the unit procurement cost are set to zero. It is
also assumed that there is no replenishment lead-time. However,
a brief discussion of positive lead-time is presented in the
conclusion section.

2.1. The optimal non-stationary (s,S) policy

Scarf [8] developed the concept of K-convexity and proved that
under the aforementioned assumptions the optimal inventory
policy follows an (s,S) rule. He provided a dynamic programming
formulation to compute the optimal (s,S) levels for each period.
Obviously, (s,S) levels are not constant for different periods in
non-stationary problems. Thus, parameters of a non-stationary
policy can be represented as (s,,S,) for period n. The dynamic
program proposed by Scarf is given below

Ca(x) = min{Ly(x) + E{G; 1 (X—dn)}, K+ Ln(Sn) + E{Cy . 1(Sn—dn)}} (1)

The state variable x is the inventory position at the beginning
of the time period. C,(x) denotes the expected cost of following
the optimal policy from period n onwards, L,(x) represents the
expected period cost function if the opening inventory position is
x. It is extremely difficult to find optimal (s,,S,) levels when the
state space of x is continuous. Relatively recently, Bollapragada
and Morton [22] compute optimal (s,,,S,) levels by restricting the
state space of x to integer values. In this paper, we employ their
approach to determine the optimal non-stationary (s,S) policy.

2.2. Best representative stationary (s,S) policy

One may think of two possible approaches to obtain the best
stationary policy for a non-stationary demand pattern. The first
approach is to find a stationary demand distribution which best
fits the original demand for the given inventory system. Once the
best stationary demand distribution is determined, the corre-
sponding stationary policy can be computed using the algorithm
proposed by Zheng and Federgruen [17]. The second approach is
to find a stationary policy which provides the minimum cost for
the actual non-stationary demand. To the best of our knowledge,
there is no published work in the literature on either one of these
approaches. Therefore we settle to employ an exhaustive search
procedure. The aforementioned approaches differ in their search
spaces, such that, the former approach requires a search on
various demand patterns, whereas the latter requires a search on
various policy parameters. Since characterizing the search space
of the first approach is rather difficult compared to the second
one, we employ the second approach, and compute the best
stationary policy through a two-dimensional search procedure on
integer valued (s,S) couples with s <S. The expected cost of each
(s,S) pair is examined by means of the recursive formulation given
in Eq. (1) without considering minimization.

3. Numerical study
The experiment design, results and their interpretation are
crucial to understand the application of stationary policies in non-

stationary demand environments. In the next subsections these
will be given in detail.

3.1. Experiment design

In the experiment design phase we concentrate on: (i) end-of-
horizon effects, and (ii) demand and cost parameters.
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