
Future Generation Computer Systems 21 (2005) 1345–1355

Generating efficient derivative code with TAF
Adjoint and tangent linear Euler flow around an airfoil

R. Gieringa, T. Kaminskia,∗, T. Slawigb

a FastOpt, Schanzenstr. 36, 20357 Hamburg, Germany
b Technische Universität Berlin, Straße des 17. Juni 136, D-10623 Berlin, Germany

Available online 18 December 2004

Abstract

FastOpt’s new automatic differentiation tool TAF is applied to the two-dimensional Navier–Stokes solver NSC2KE. For a
configuration that simulates the Euler flow around an NACA airfoil, TAF has generated the tangent linear and adjoint models as
well as the second derivative (Hessian) code. Owing to TAF’s capability of generating efficient adjoints of iterative solvers, the
derivative code has a high performance: running both the solver and its adjoint requires 3.4 times as long as running the solver
only. Further examples of highly efficient tangent linear, adjoint, and Hessian codes for large and complex three-dimensional
Fortran 77-90 climate models are listed. These examples suggest that the performance of the NSC2KE adjoint may well be
generalised to more complex three-dimensional CFD codes. We also sketch how TAF can improve the adjoint’s performance by
exploiting self-adjointness, which is a common feature of CFD codes.
© 2004 Elsevier B.V. All rights reserved.

Keywords: Computational fluid dynamics; Adjoint; Hessian; Automatic differentiation; Navier–Stokes; Shape optimisation

1. Introduction

Many applications in computational fluid dynamics
(CFD) do benefit from availability of sensitivity
information. Examples span the range from multidis-
ciplinary shape design of airfoils or turbomachinery
blades to modelling of atmosphere or ocean dynamics
[1–3]. Sensitivities quantify the impact of a change in

∗ Corresponding author. Fax: +49 40 48096357.
E-mail addresses: ralf.giering@fastopt.com (R. Giering),

thomas.kaminski@fastopt.com (T. Kaminski),
slawig@math.tu-berlin.de (T. Slawig)

certain control variables on particular target quantities
of interest. In aerodynamics or aeroacoustics appli-
cations, lift and drag or kinetic energy are examples
of such target quantities, and the control variables
define the shape of the object under consideration.
In atmosphere and ocean modelling, typical target
quantities are integrals of the large-scale circulation or
the difference between observations and their model-
simulated counterparts. Typical control variables are
the initial state, boundary values, or parameters in the
model formulation.

In some applications, the sensitivity information is
interpreted directly. In others, this interpretation is done

0167-739X/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2004.11.003



1346 R. Giering et al. / Future Generation Computer Systems 21 (2005) 1345–1355

by an optimisation algorithm, which iteratively exploits
sensitivity information to vary the control variables
in order to improve the value of the target quantity.
Second-order sensitivity (Hessian) information[4] is
important to speed up this search process and to anal-
yse robustness of the solution[5,6].

There are different strategies of deriving sensitiv-
ity information. A first approach, also called contin-
uous approach, applies perturbation theory[7] to the
model: the model equations are linearised, discretised
and the tangent linear model is coded. For most prob-
lems, however, the desired number of control variables
is much larger than that of the target quantities. For
many of these problems, sensitivity calculation is only
computationally feasible via an adjoint formulation of
the model equations[8]. The adjoint equations are then
discretised and coded, which yields the adjoint model.

An alternative strategy of obtaining sensitivity in-
formation applies automatic differentiation (AD) (see
[9] and references therein) directly to the code of the
model: To generate the derivative code (tangent linear
or adjoint model), the model code is decomposed into
elementary functions, which more or less correspond
to the individual statements in the code. These elemen-
tary functions are differentiated (this derivative is also
called local Jacobian). The derivative code multiplies
these local Jacobians, which, according to the chain
rule, yields the derivative of the composite function. As
opposed to derivative approximation by divided differ-
ences (also known as numerical differentiation), AD
provides sensitivity information that is accurate within
round-off error.

Like the continuous approach, AD can construct
both tangent linear and adjoint models. The tangent
linear model uses the order, in which the model eval-
uates the statements, to evaluate the product of their
Jacobians. The adjoint model does this evaluation in
reverse order. In AD terminology, the tangent lin-
ear model operates in forward mode and the adjoint
model operates in reverse mode. Similar to the fi-
nite difference approximation, the computational re-
sources needed in forward mode increase with the
number of control variables. In reverse mode, they are
roughly proportional to the number of target quanti-
ties, but virtually independent of the number of control
variables. The availability of the reverse mode is an-
other major advantage of AD over the finite difference
approximation.

Applying the continuous approach requires the
choice of discretisation schemes for both the model
equations and the adjoint equations. Typically, in the
discretisation step, the adjoint relation is only valid in
an approximate sense. Consequently, the sensitivity in-
formation that is provided by the adjoint code is not
fully consistent with the actual sensitivity of the model
code. This inconsistency, which does not occur when
using AD, can be problematic in an optimisation con-
text[10]. Also, for particular applications, the rigorous
derivation of the adjoint equations that form the basis of
the continuous adjoint approach can become a cumber-
some piece of analysis[11,8]. For second derivatives,
this analysis gets even more complex[4]. By contrast,
using AD to construct the adjoint code avoids this an-
alytical effort at all.

AD can be carried out by hand or by an AD tool
(e.g. [12–17]; see alsohttp://www.autodiff.org). Ap-
plying an AD tool restricts the effort of development
and maintenance to the model itself: based on the model
code, the adjoint and tangent linear models as well as
the Hessian code can be generated and maintained au-
tomatically. Especially for models under development,
this constitutes a significant advantage and calls for
an AD tool as integral component of a state-of-the-art
modelling system[18,19]. By contrast, the continuous
approach requires coding and maintaining the deriva-
tive code by hand. For CFD codes written in Fortran
77, AD tools have been applied to generate many tan-
gent linear codes (e.g.[20–25]) and few adjoint (e.g.
[26,28]) and Hessian (e.g.[29]) codes.

This paper introduces the relatively new AD tool
transformation of algorithms in Fortran (TAF,[16]),
which handles Fortran 77-95 code. For almost a decade,
TAF’s predecessor TAMC ([17]) has been generating
tangent linear and adjoint models, as well as Hessian
code of an ever increasing number of, among others,
large models of atmosphere and ocean dynamics. The
performance of the derivative code generated by TAMC
and TAF is very high, which is crucial for the feasibility
of most applications.

Recently, the first TAMC and TAF applications to
Navier–Stokes solvers for shape design and instanta-
neous control have been completed ([30–34]). Using
an example of a two-dimensional Navier–Stokes solver
(NSC2KE,[35]), this paper describes how TAF can be
applied to generate highly efficient adjoint and tangent
linear and Hessian code. As many other CFD codes,

http://www.autodiff.org


Download English Version:

https://daneshyari.com/en/article/10330393

Download Persian Version:

https://daneshyari.com/article/10330393

Daneshyari.com

https://daneshyari.com/en/article/10330393
https://daneshyari.com/article/10330393
https://daneshyari.com

