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Abstract

The Kalman filter is a sequential estimation procedure that combines a stochastic dynamical model with observations in order
to update the model state and the associated uncertainty. In the situation where no measurements are available the filter works
as an uncertainty propagator. The most computationally demanding part of the Kalman filter is to propagate the covariance
through the dynamical system, which may be completely infeasible in high-dimensional models. The reduced rank square-root
(RRSQRT) filter is a special formulation of the Kalman filter for large-scale applications. In this formulation, the covariance
matrix of the model state is expressed in a limited number of modesM. In the classical implementation of the RRSQRT filter the
computational costs of the truncation step grow very fast with the number of modes (>M3). In this work, a new approach based
on the Lanzcos algorithm is formulated. It provides a more cost-efficient scheme and includes a precision coefficient that can be
tuned for specific applications depending on the trade-off between precision and computational load.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The Kalman filter[6] is a sequential estimation pro-
cedure that combines a stochastic dynamical model
with observations in order to update the model state
and the associated uncertainty. The filter works with
the mean and the covariance of the state vector and
contains two steps: (i) model propagation and (ii) mea-
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surement update. If no measurements are available, the
filter can be treated as an uncertainty propagator. The
most computationally demanding part of the Kalman
filter is to propagate the covariance through the dynam-
ical system.

In absolute precision mathematics for low-
dimensional, linear, Gaussian, dynamical systems the
classical formulation of the Kalman filter works fine.
Problems appear when we are interested in real-life
applications, which involve finite computer precision,
high-dimensional, non-linear system dynamics, and
non-additive, non-Gaussian system noise.
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The question of development, choice and implemen-
tation of suboptimal Kalman filtering[12] in engineer-
ing applications has been investigated since the first
work of Kalman[6]. Suboptimal Kalman filter proce-
dures should fulfill the following requirements:

1. to be robust in finite precision arithmetic;
2. to effectively reduce the computational burden com-

pared to a straightforward implementation of the
classical Kalman filter, which may be completely
infeasible in high-dimensional models;

3. to be able to deal with non-linear systems;
4. to be able to deal with non-additive and non-

Gaussian noise.

An important step towards filter robustness was
made by dealing with a square-root of the covariance
matrix S, S·ST =P instead of the full covariance ma-
trix itself P. This approach automatically preserves the
property ofP to be a covariance matrix:

P ≥ 0 or λi ≥ 0, λi is eigenvalue ofP. (1)

Calculation of a square-root of a positive definite ma-
trix P can be made by any known algorithm such as
Cholesky decomposition or SVD decomposition of a
symmetric matrix. Verlaan and Heemink in Ref.[16]
remarked that the square-root approach has an addi-
tional important feature. Because the square-root ma-
trix has a much smaller range of eigenvalues, or in other
words a much smaller condition number, square-root-
based algorithms are numerically more stable than the
classical Kalman filter.

The second requirement, the filter being feasible
for high-dimensional systems, leads to the logical con-
struction:

P ≈ S·ST, (2)

where a huge matrixP∼N×N is approximated with
its small rank square-rootS∼N×M,M�N.

There are two known approaches for construction
of a small rank square-root approximation: either a
stochastic or a deterministic approach. The former is
realized in the ensemble Kalman filter[3]. It is based
on the fundamental theorem of statistical estimation
theory. Let{ξi ; i≥ 1} be independent realizations of
the same random variableξ with meana=Eξ and

covarianceP=E�(ξ−a)(ξ−a)T
. Let

aM = 1

M

M∑
i=1

ξi,

SM = 1√
M−1

[ ξ1 − aM ξ2 − aM · · · ξM−aM ],

(3)

then with probability 1

PM = SM · (SM)T

= 1

M − 1

M∑
i=1

(ξi − aM) · (ξi − aM)T → P,

M → +∞. (4)

With the ensemble Kalman filter approach all the
requirements outlined above are fulfilled:

1. The ensemble KF uses a square-root approximation
of the covariance matrix, and hence it is robust in
finite precision arithmetic.

2. The associated computational cost for propagation
of the covariance matrix is in the order of 100–500
model runs[8,13] which can be easily parallelized.
Thus, it has the potential to reduce drastically the
computational costs as compared to the classical
Kalman filter implementation.

3. It works with any system propagator, linear or non-
linear. In this respect it is able to interface the model
in a highly transparent way (the model is just a black
box for the filter), and hence is feasible for most
real-life applications.

4. The filter has no specific restrictions with respect
to the definition of system noise. The noise can be
introduced in any part of the model.

The only drawback of this approach is the relatively
slow convergence of the covariance estimate:

PM − P ∼ 1√
M
, M → +∞. (5)

In the other approach, a deterministic low rank square-
root approximation is constructed in the following way.
If P is represented according to its SVD decomposition

P = LDLT, D = diag{λi}, λi ≥ λi+1 ≥ 0,

LLT = LTL = I, (6)
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