
Future Generation Computer Systems 29 (2013) 451–459

Contents lists available at SciVerse ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Graph partitioning algorithms for optimizing software deployment in mobile
cloud computing
Tim Verbelen ∗, Tim Stevens, Filip De Turck, Bart Dhoedt
Ghent University – IBBT, Department of Information Technology, Gaston Crommenlaan 8 bus 201, 9050 Gent, Belgium

a r t i c l e i n f o

Article history:
Received 8 September 2010
Received in revised form
19 June 2012
Accepted 14 July 2012
Available online 20 July 2012

Keywords:
Distributed systems
Graph algorithms
Deployment optimization
Cloud computing
Mobile computing

a b s t r a c t

As cloud computing is gaining popularity, an important question is how to optimally deploy software
applications on the offered infrastructure in the cloud. Especially in the context of mobile computing
where software components could be offloaded from the mobile device to the cloud, it is important
to optimize the deployment, by minimizing the network usage. Therefore we have designed and
evaluated graph partitioning algorithms that allocate software components to machines in the cloud
while minimizing the required bandwidth. Contrary to the traditional graph partitioning problem our
algorithms are not restricted to balanced partitions and take into account infrastructure heterogenity.
To benchmark our algorithms we evaluated their performance and found they produce 10%–40% smaller
graph cut sizes than METIS 4.0 for typical mobile computing scenarios.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, the emergence of cloud computing is leading to a
new paradigm of utility computing [1], where computing power is
offered on an on-demand basis. Users are able to access applica-
tions, storage and processing over the Internet, via services offered
by cloud providers on a pay-as-you-use scheme. The advantages
for the end users are reduced cost, higher scalability and improved
performance in comparison tomaintaining their own private com-
puter systems, dimensioned for peak load conditions. Moreover
the elasticity of the cloud reduces the risks of overprovisioning (un-
derutilization) or underprovisioning (saturation) [2].

The usage of the cloud is not only beneficial for web-based
applications, but can also be used for other applications composed
of many service components following the service-oriented
programming paradigm. Some of these service components may
have high needs regarding CPU power or memory consumption,
and should therefore be executed on dedicated server machines in
the cloud rather than on a regular desktop PC or mobile terminal,
for example recognition components in an object recognition or
speech to text application.

The adoption of the cloud paradigm poses the problem where
to deploy software components, given the many options in terms
of available hardware nodes in even moderate scale data centers.
This deployment optimization is important to both the cloud user

∗ Corresponding author.
E-mail address: tim.verbelen@intec.ugent.be (T. Verbelen).

and the cloud provider in order to reduce costs. All components
need to be deployed on a machine with sufficient CPU power
while the communication overhead between different machines
is preferably minimized as this introduces extra latency and
network load. This problemcanbemodelled as a graphpartitioning
problem where a weighted graph of software components has
to be partitioned in a number of parts representing the available
machines. Moreover the optimal deployment can change over
time, and thus in order to realise an optimal deployment a fast
algorithm is desired.

An important scenario in this respect is cloud overspilling. In
this scenario, a company offloads work from its own private in-
frastructure to a public cloud infrastructure on peak moments, as
shown in Fig. 1. This enables the company to dimension its infras-
tructure for the average workload instead of the peak workload,
reducing the underutilization and the cost of the private infras-
tructure. This situation is typical in digital document processing
where one faces strictmonth-end or year-end deadlines, and thou-
sands of batches of documents are to be processed. Typically, doc-
ument processing systems support workflows consisting of a few
tens of components (including content ingest, reformatting, lay-
outing, merging, versioning, logging, output generation and print-
ing components). As many of these components come in different
versions, and potentially need to be instantiated for each customer
separately, the number of components in such a scenario quickly
amounts to a few hundreds.

A second use case is situated in the area of integrated simulation
tools for engineering purposes [3]. These integrated tools typically
involve multi-physics simulation (e.g. structural analysis, acoustic

0167-739X/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2012.07.003

http://dx.doi.org/10.1016/j.future.2012.07.003
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:tim.verbelen@intec.ugent.be
http://dx.doi.org/10.1016/j.future.2012.07.003


452 T. Verbelen et al. / Future Generation Computer Systems 29 (2013) 451–459

Fig. 1. Work is offloaded from private infrastructure to a public cloud on peak
moments, reducing underutilization (and the cost) of the private infrastructure.

Fig. 2. A cloudlet consisting of four devices connected by a wireless network
sharing their resources. Application components are distributed among all devices
in the cloudlet, in order to enhance the user experience of all users.

simulation and engine dynamics simulation in the case of design-
ing a new automobile engine), and the number of simulation tools
involved can easily amount to 10–20 for small engineering projects
to a few 100 individually deployable components for a realistic en-
gineering project. In such engineering endeavours, often parame-
ter sweeps are executed to optimize the design (or to assess the
sensitivity of the resulting design performance w.r.t. these param-
eters), necessitating multiple instances of these simulation com-
ponents running concurrently, in order to arrive at realistic design
times. Again, we end up with a component graph containing a few
100–1000 components.

This overspilling problem also arises in the context of mobile
computing, where the cloud can be used to enhance the capabili-
ties of a mobile device. Due to the restricted CPU power of mobile
devices, the idea is to offload parts of the application at runtime
to a cloud infrastructure [4]. The question then is which parts to
offload and to deploy on which machines in the cloud – and how
many – in order to spread the loadwhile keeping the needed band-
width low. In this case, the complexity of the partitioning problem
depends on the granularity of the offloading, as offloading can be
done on component [4], Java class [5] ormethod [6] level, resulting
in graphs of tens, hundreds or thousands of components.

A special case of deployment optimization occurs when
multiple mobile devices connected via a wireless network share
their resources in order to enhance the user experience of all users,
in a so called ‘‘cloudlet’’ [7], as shown in Fig. 2. This is the case
when no internet uplink is available for offloading to the cloud, or
when cloud offloading is not beneficial due to a highWAN latency.
Because the bandwidth is a scarce resource and shared between all
devices in the wireless LAN, a global optimization is needed taking
into account all application components of all devices.

As an use case, we mention a mobile augmented reality ap-
plication. When casting such an application into a component
framework, the number of independently deployable components
amounts to 5–10 [7], with different components for tracking cam-
era movements, building a 3D map of the environment, recogniz-
ing objects, detecting collisions between objects, rendering a 3D

overlay, etc. Other applications, such as 3D games, are reported to
consist of 10–20 components [8]. Assuming a few tens of users con-
nected to the same cloudlet and hence sharing computing and net-
work resources, the number of components easily exceeds 100. As
these users are connected through heterogeneous devices (a mix
of low-end and high-end devices), an optimal deployment guaran-
teeing aminimal quality of experience for all users should be aimed
for.

In this paper we present algorithms to partition a software ap-
plication, composedof a number of components, on anumber of in-
terconnectedmachines in the cloudwith different capacities while
minimizing the communication cost between the components. In
Section 2 related work regarding graph partitioning and task allo-
cation on the grid is discussed. Section 3 more formally describes
our problem and in Section 4 algorithms are proposed that solve
the problem. In Section 5 the different algorithms are evaluated
and compared regarding solution quality and execution time, and
the influence of different parameters is discussed. In view of the
use cases mentioned in this introduction, we focus on graphs con-
taining 100–1000 components for this evaluation. We also com-
pare our solutions to METIS 4.0 for partitioning graphs in k bal-
anced partitions and show the applicability of our algorithms in the
mobile offloading scenario. Finally Section 6 concludes this paper.

2. Related work

2.1. Graph partitioning

Graph partitioning is a fundamental problem in many domains
of computer science, such as VLSI design [9], parallel process-
ing [10] and load balancing [11]. The graph partitioning problem
tackles the problem of dividing a graph in k equal sets while mini-
mizing the edges between the sets.When k = 2 this is also referred
to as the min-cut bipartitioning problem. Finding a good solution
for this problem is known to be NP-Hard [12]. In the following we
give a brief overview of the state-of-the-art and recent advances in
graphpartitioning. For amore detailed survey of graph partitioning
techniques we refer to [13,14].

A first class of algorithms are the so called move-based ap-
proaches, which try to iteratively improve the partition by vertex
moves or swaps between the parts, such as the Kernighan–Lin (KL)
algorithm [15]. By choosing moves that introduce a cost reduc-
tion of the graph cut this algorithm converges to a local optimum.
Fiduccia and Mattheyses introduced a number of optimizations to
the KL algorithm which led to a linear time algorithm for graph
partitioning [16]. These move-based algorithms can be combined
with stochastic methods such as simulated annealing [17], par-
ticle swarm optimization [18] or ant colony optimization [19]
in order to escape from local optima. The biggest disadvantage of
iterative improvement methods is that their performance deterio-
rates as the graphs get larger.

In order to partition large graphs the multilevel approach has
become widely adopted [20,21,17–19,22]. The main idea is to
iteratively coarsen the initial graph by merging vertices according
to a matching until a small graph with a similar structure remains.
This graph can then be partitioned with a spectral method [23,20]
or a greedy graph growing algorithm [24]. Next the graph is again
iteratively uncoarsened and a local improvement heuristic such as
the KL algorithm is applied at each level. The multilevel scheme
is also used in state-of-the-art graph partitioning libraries such as
METIS [24], SCOTCH [25] and JOSTLE [26].

Recent work in graph partitioning explores methods based on
diffusion [11] or maximum flow [27]. Also the combination of
known techniques can result in new heuristics. Chardaire et al.
use a PROBE (Population Reinforced Optimization Based Explo-
ration) heuristic, combining greedy algorithms, genetic algorithms



Download English Version:

https://daneshyari.com/en/article/10330566

Download Persian Version:

https://daneshyari.com/article/10330566

Daneshyari.com

https://daneshyari.com/en/article/10330566
https://daneshyari.com/article/10330566
https://daneshyari.com

