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a b s t r a c t

The MapReduce architectural pattern popularized by Google has successfully been utilized in several
scientific applications. Up until now, MapReduce is rarely employed in the field of Systems Biology. We
investigate whether a MapReduce approach utilizing on-demand resources from a Cloud is suitable to
perform simulation tasks in the area of Metabolic Flux Analysis (MFA). An Amazon ElasticMapReduce
Cloud implementation of the parallel, parametric Monte Carlo bootstrap in the context to 13C-MFA is
presented. The seamless integration of the application into a service-oriented, BPEL-based scientific
workflow framework is shown. A comparison of a straightforward MapReduce implementation using
the Hadoop streaming interface on various Amazon ElasticMapReduce instance types and a single CPU
core computation approach reveals a speedup of 17 on 64 Amazon cores. I/O operations on many small
files within the Reduce step were identified as the limiting step. By exploiting the Hadoop Java API,
making use of built-in data types and tuning problem-specific Hadoop parameters, the I/O issues could be
resolved. With the revised implementation, a speedup of up to 48 could be achieved on 64 Amazon cores.
To investigate the runtimes of a realistic 13C-MFA analysis, 50,000 Monte Carlo samples with a typical
metabolic network model have been performed on 20 virtual nodes in 24 h and 23 min with a total cost
of $384. Our work demonstrates the possibility to perform scalable Systems Biology applications using
Amazon’s Cloud MapReduce service.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Cloud computing is increasingly demonstrating its benefits
for processing large data sets in many scientific application
fields. Recent efforts in modern software framework development
unite scientific workflow orchestration and high-performance
computing (HPC) technologies to establish complex, domain-
specific applications. By relying on web service technology, the
design of parallel applications to solve time-consuming simulation
problems becomes an attractive option.

The focus of our work is to evaluate the benefits of Cloud com-
puting technology in the context of Metabolic Flux Analysis with
13C-isotope tracers (13C-MFA). 13C-MFA is a modern approach in
Metabolic Engineering and Systems Biology enablingmodel-based
estimation of intracellular reaction rates [1]. The overall 13C-MFA
workflow consists of various steps following a classical model
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building cycle: starting from the definition of the model structure,
the model is parameterized. Unknown model parameters should
be inferable fromgivenmeasurement configurations (identifiability
analysis) and if so, the parameters have to be estimated withmaxi-
mum precision and accuracy (parameter fitting). Statistical quality
measures then provide a handle to the fitted parameters’ certainty.
Themodel is validated bynewexperimental data typically unravel-
ing a number ofmodel deficiencies. Optimally, by a planned exper-
imental design, this process is repeated until the validation step is
considered to be satisfactory. Although seemingly straightforward,
13C-MFA studies can become complex by two critical aspects:

1. Several tasks and sub-workflows are computationally challeng-
ing: due to the nonlinear nature of the parameter estimation
problem, quite a number of difficulties may arise, such as con-
vergence to local solutions rather than to a global one, the
characteristics of the objective function may be either flat or
rugged in the neighborhood of a solution, occurrence of under-
determined models etc. Hence, typically long-running global
optimizations relying on heuristics are applied to find the op-
timal solution.

2. Many tasks need to be executed in an iterative or recursive
fashion, and thus, the total number of workflow steps is not
known beforehand: for example, non-identifiable parameters
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have to be eliminated from the model before parameter fitting.
This is to be done by the modeler rather than by a ‘‘fixed
protocol’’. Identifiability, however, depends on the parameter
values that have yet to be determined by the fitting approach.

Contemporary scientific workflow research projects are ad-
dressing these challenges [2] and have inspired the development
of a service-oriented scientificworkflow framework tomanage and
organize the modeling cycle for 13C-MFA [3]. Moreover, to satisfy
the specific requirements of 13C-MFA, particular emphasis has to
be put on flexible workflow orchestration, efficient on-demand re-
source provisioning, and user-friendly access to the entire spec-
trum of 13C-MFA applications.

MapReduce is a domain-independent programming model for
processing data in a highly parallel manner [4]. Recently, several
commercial and scientific applications have been realized using
the MapReduce architectural pattern [5]. Applications such as
data mining, image processing, and pattern recognition have
successfully usedMapReduce to solve computationally challenging
problems. In the field of Systems Biology, this architectural pattern
has rarely been employed. Up to now, applicationswithMapReduce
are predominantly restricted to classical bioinformatics tasks, such
as phylogenetic clustering or the analysis of DNA sequencing
data [6–8].

Amazon offers ElasticMapReduce (EMR), a MapReduce imple-
mentation, as a Cloud computing service [9]. EMR uses the de-facto
standard implementation of the MapReduce framework, Apache
Hadoop MapReduce (henceforth abbreviated as Hadoop). Since
EMR interfaces are exposed as (web) services, a simple integration
of on-demand resources into our service-oriented scientific work-
flow framework is possible.

In this paper, an approach is presented to realize the Monte
Carlo Bootstrap (MCB) method as part of a BPEL workflow for
13C-MFA using MapReduce in Amazon’s Elastic Compute Cloud.
MCB is one of the most prominent methods for data analysis and
quality assessment of model-based evaluations [10], and hence,
is one important building block within the 13C-MFA modeling
cycle [3,11,12]. Being a computationally expensive approach that
requires the same calculation steps many times, it is well suited
to be realized in a distributed environment with the MapReduce
programming model.

Our Cloud-basedHadoop implementation of theMCB algorithm
is evaluated in two experimental series. Firstly, the runtime
behavior of our approach on metabolic network models that vary
in size is analyzed. With the conventional definition of speedup
(i.e., T1/Tp, where Tp is the runtime on p cores), a value of 48
could be reached on 64 virtual Amazon cores. Secondly, to show
that it is possible to scale our solution to even larger problems,
a biologically meaningful large-scale and compute-intensive MCB
study with 50,000 Monte Carlo samples is conducted. This
simulation experiment is computed on 152 virtual Amazon cores
in 24 h and 23 min, with a total cost of $384. Thus, by utilizing
Hadoop, our Monte Carlo applications can be easily scaled on on-
demand Cloud computing resources.

This paper is organized as follows. In Section 2, components
of the scientific workflow framework including relevant 13C-MFA
methods and simulation tools, MapReduce, as well as the overall
software architecture are presented. The MCB method and design
considerations for the Hadoop implementation are discussed
Section 3. Section 4 covers implementation details of the MCB
solution regarding service workflows, Hadoop and Amazon Cloud
interfaces. Comparative runtime results are presented in Section 5.
Related work from life sciences using theMapReduce framework is
discussed in Section 6. Section 7 concludes the paper and outlines
areas for future work.

2. The 13C-MFA computing architecture

2.1. Metabolic Flux Analysis and the simulator 13CFLUX2

Microorganisms convert substrates like sugars into products
like amino acids. Understanding and optimizing this process is
a challenging part of ongoing research in the field of Metabolic
Engineering. Isotope-based Metabolic Flux Analysis is a powerful
method for the accurate determination of reaction rates within
living microorganisms [1]. Basically, this process consists of two
steps:

1. Carbon labeling experiment: Substrates labeled with 13C at
specific carbon positions aremetabolized by the cells: through a
complex network of reactions and driven by metabolic activity,
the (isotopic) carbon atoms are distributed within the cell
and characteristic labeling patterns emerge in intermediate
metabolites. As soon as the labeling is equilibrated, samples
are withdrawn from the bioreactor and analyzed. Isotopically
labeled fractional enrichments are subsequently quantified
with highly accurate measurement devices [13].

2. Computer-based evaluation: The measured fractional labeling
enrichments are incorporated into an organism-specific net-
work model that describes the fate of all carbon atoms. A
nonlinear mathematical model is deduced that relates model
parameters to intracellular reaction rates (so-called fluxes) and
measurements. The in vivo fluxes are determined by solving an
inverse, nonlinear least-squares problem. Finally, the quality of
these estimations is assessed using statistical methods [1].

For computer-based evaluation, high-performance simulation
tools are readily available that are well-suited for the evaluation of
experimental data sets. In particular, the software 13CFLUX2 [14]
is used, the successor of the widely established 13CFLUX toolbox
[15]. 13CFLUX2 programs are implemented in a modular manner
and compiled to run as command-line executables. Graphical
interfaces are deliberately separated from the computational
core components. Well-defined input/output semantics relying
on XML-based documents, FluxML and FWDSIM, are used for
describing and configuring models as well as measurements and
for data exchange [14]. Thus, all ingredients are available to
easily integrate 13CFLUX2 programs into workflows in order to
build automated simulation tasks. Further details on the 13C-MFA
methodology can be found in recent review papers [14–16].

2.2. MapReduce, Apache Hadoop and Amazon’s Cloud

The MapReduce architectural pattern has evolved as a generic,
domain-independent processingmethod for large amounts of data.
Two functions, map and reduce, are required to be implemented
by the user with the following prototypes [4]:

map (k1, v1)→ list (k2, v2)
reduce (k2, list(v2))→ list (v2).

These interfaces are similar to those present in Lisp and other
functional programming languages. list denotes a list of objects, k1
and k2 represent key types, v1 and v2 are value types. The input
key/value pairs (k1, v1) are pairwise independent, thus, map can
be invoked in parallel for all pairs, yielding an intermediate list of
mapped (k2, v2) pairs. For each key k2, the corresponding values
v2 are grouped and passed to the reduce function, which merges
– or reduces – final result values to a list of type v2.

The open-source ApacheHadoop project has emerged as the de-
facto standard implementation for the MapReduce programming
model [5]. Providing custom map and reduce functions, Hadoop
automatically manages parallel execution of these functions on
traditional clusters as well as on-demand Cloud infrastructures.
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