
Future Generation Computer Systems 29 (2013) 61–73

Contents lists available at SciVerse ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Deadline prediction scheduling based on benefits
Javier Palanca ∗, Marti Navarro, Ana García-Fornes, Vicente Julian
DSIC - Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain

a r t i c l e i n f o

Article history:
Received 4 April 2012
Received in revised form
7 May 2012
Accepted 17 May 2012
Available online 27 May 2012

Keywords:
Guaranteed processor
Service-oriented computing
Scheduling

a b s t r a c t

This paper describes a scheduling algorithm that composes a scheduling plan which is able to predict the
completion time of the arriving tasks. This is done by performing CPU booking. This prediction is used
to establish a temporal commitment with the client that invokes the execution of the task. This kind of
scheduler is very useful in scenarios where Service-Oriented Computing is deployed and the execution
time is used as a parameter forQoS. This scheduler is part of an architecture that is based on theDistributed
Goal-Oriented Computing paradigm, which allows agents to express their own goals and to reach them
by means of service compositions. Moreover, the scheduler is also able to prioritize those tasks which
provide greater benefits to the OS. In this work, the scheduler has been designed in several iterations and
tested by means of a set of experiments that compare the scheduler algorithm with a representative set
of scheduling algorithms.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, service-oriented applications are a new way of
developing flexible and distributed solutions. In applications of
this kind, the Quality of Service (QoS) has become one of the
highest priorities for service providers and their clients. Due to
the dynamic and unpredictable nature of the web, providing an
acceptable QoS is quite a challenging task. Service consumers need
guarantees that the serviceswill be executedwith aminimum level
of quality. For this reason, service providers must offer and fulfill
this commitment to quality.

Service execution time is one of the most important QoS
parameters in web services. There are some systems, such as the
RT-MOVICAB-IDS system [1], where the execution of a service
on time is considered to be a critical parameter. Therefore, it is
necessary to give a valid response before a certain instant in time.
Otherwise, the system may become inefficient.

Time as a QoS parameter is not only important when executing
a single service but also when a set of services is executed as
part of a service composition. In this case, the problem resolution
requires the collaboration of several services and, therefore, both
the execution time of each individual service and the execution
time of the service composition that fulfills the goal must be taken
into account.

There are several proposals that introduce the time parameter
into web services as a form of expressing temporal constraints.
Some of these proposals are shown in [2–4]. Moreover, there are

∗ Corresponding author.
E-mail address: jpalanca@dsic.upv.es (J. Palanca).

other proposals such as [5–7] that use the time parameter to guide
the service composition. In all these proposals, the time parameter
is considered from the point of view of the descriptive level, but
at the execution level it provides no guarantee that these time
constraintswill be fulfilled.Moreover, the service execution time is
often not known. This is because this time parameter may depend
on many factors that are not controlled by the service provider,
such as the system workload where the service is executed or the
ending of other services that were previously necessary to execute
the service. In these cases, the system must be able to diagnose
how long it takes to complete each service. This is a very hard and
complex process to procure with current architectures, since they
are not focused on time predictability.

Therefore, it is very important to be able to determine the
completion time of a single service or a service composition
taking into account how the system workload is and, based on
this, the system must be able to predict when the service or the
composition ends.With this information, the system could become
more efficient and could establish a commitment with the service
client indicating when it is going to fulfill the service goal. When
the system executes a service on time, it may gain a benefit offered
by the service client. Moreover, the more quickly the services are
fulfilled, the greater benefit the system gains. Thus, it would be
desirable to have mechanisms that help to fulfill all services on
time with the highest possible benefit.

In previous works, we presented an operating system (OS)
architecture [8] that has the ability to control the service execution
and also the ability to build service compositions taking into
account the temporal constraints that the services have. This
proposal increased the abstraction level provided by the operating
system and their services. This allows us to offer an OS execution

0167-739X/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2012.05.007

http://dx.doi.org/10.1016/j.future.2012.05.007
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:jpalanca@dsic.upv.es
http://dx.doi.org/10.1016/j.future.2012.05.007


62 J. Palanca et al. / Future Generation Computer Systems 29 (2013) 61–73

layer that is integrated into the network and also to offer security
and reliability mechanisms, which are not available in lower
levels of the OS architectures. Our OS architecture is based on
a new paradigm called Distributed Goal-Oriented Computing [9].
This approach is based on Service-Oriented Computing concepts.
Its purpose is to find solutions to problems through composition
and execution of various services offered by different agents,
taking the goal to be achieved as a starting point. This Distributed
Goal-Oriented Computing paradigm suggests that agents are the
components that provide services in a ubiquitous environment
where users express their goals. Thus, users can reach a solution
by finding a plan that achieves the selected goal with little user
interaction.

The OS needs a scheduler to establish a proper commitment
that guarantees that services end at a time agreed upon by both
the client and the provider. This module is an important part
of the OS since it is responsible for distributing the CPU time
among all of the services in execution. The scheduler distributes
the CPU time by means of a scheduling algorithm. To do this,
the scheduling algorithm plans the order of the execution of the
services that were invoked by the distributed environment. There
are many schedulers used for general purpose operating systems.
These approaches, as discussed below, do not satisfy all the needs
of the Distributed Goal-Oriented Computing paradigm. Thus, in
this paper, we propose new scheduling algorithms that are not
only able to schedule tasks from a distributed environment [10],
but they are also able to analyze when the service ends its
execution and to plan the delivery of services with the intention of
maximizing the benefit obtained by the OS. In this paper, we also
compare the proposed scheduling algorithms with other classical
scheduling algorithms.

The paper is organized into the following sections: Section 2
describes the state of the art for scheduling algorithms. Section 3
presents a new scheduling algorithm based on planning-based
scheduling. Section 4 presents a set of experiments to compare
and refine the different algorithms presented in this paper. Finally,
Section 5 presents our conclusions.

2. Scheduling algorithms

As started above, this paper presents a new scheduling
algorithm that allows the OS to make a scheduling plan that
takes into account the prediction of when a task is going to
finish its execution and how much benefit (in quantitative terms)
this execution will bring to the OS. This section explores a set
of representative schedulers that use different techniques to
share the processor (fair algorithms, real-time algorithms, or non-
preemptive algorithms). In this section, we also explore a category
of schedulers called Planning-based scheduling which are closely
related to the scheduler presented in this work.

General purpose Operating Systems schedulers usually use fair
algorithms that equally share the processor time among all of
the tasks. The most representative example is the Round Robin
scheduling algorithm. This algorithm divides the processor time
into units called quantums and gives each task the same number
of quantums. When a task is running, it consumes its quantums;
when it runs out of time quantums, the task is expelled from the
processor in order to let another task with remaining quantums
enter. This algorithm shares the same amount of time with all the
tasks, so the feeling of interactivity is very high. However, this kind
of scheduler algorithm does not allow the timewhen a task ends to
be predicted because it is not possible to predict how many tasks
the processor resources must be shared with.

There has been an interesting evolution of scheduling algo-
rithms that try to share the processor time fairly. There is an
algorithm called the Completely Fair Scheduler (CFS) by [11]. This

algorithm was designed as a replacement of the O(1) algorithm
in the Linux kernel. Instead of using queues, this algorithm uses
a complex structure called red-black trees. Red-black trees have a
time complexity ofO(logn) for insert, search, anddelete operations.
From the red black tree, CFS efficiently picks the process that has
used the least amount of time (this process is stored in the leftmost
node of the tree). Even through this is a very fair scheduling algo-
rithm that boostsmulti-tasking performance, it is unable to predict
when the tasks are going to finish.

There exists a very simple algorithm called FCFS (First-Come
First-Served), which serves the tasks in order of arrival. This
algorithm was very common in batch systems and implemented
a queue that held the tasks in the order they came in. It is a non-
preemptive algorithm, which means that until the active task is
not finished it will not be interrupted. Of course, with this kind of
algorithm, it is easy to make a prediction of the deadline because,
in the worst case, it will be its WCET,1 since it is certain that
the task will not be interrupted. Its main drawback is that it is
a non-preemptive algorithm. In a world where multi-tasking and
interactivity are not just features but are requirements, this is not
acceptable for distributed systems, which is a focus.

However, predicting the deadline of a task is also a different
problem than those found in real-time problems. Real-time
systems have to schedule tasks that must be run before an
established instant of time, which is also called deadline. This
deadline is mandatory in hard real-time systems, although
deadline fails are not critical in soft real-time systems. These
real-time systems use specific schedulers that ensure that every
accepted task will be run before its deadline. For this reason, it is
very important to have an accurately calculated WCET.

The most simple way of scheduling real-time tasks is to use a
cyclic executive. This executive is away of scheduling tasks in a real-
time system that using cyclic tasks. These tasks have a period and
aWCET, so the cyclic executive just has to create a fixed execution
plan provided by the system designer. The cyclic executive can
replace the whole OS since it only takes an infinite loop to run the
tasks with the order established by the designer.

Planning-based scheduling is a kind of real-time dynamic
scheduling that gives assurances to arriving jobs by implementing
admission controls. These assurances are related to the ability
of the system to meet the time constraints (deadlines) of the
incoming tasks.

Planning-based scheduling (PBS) usually involvesmaking aplan
to run all the enqueued tasks, which implies assigning priorities to
the tasks. When dynamic priorities are used, the relative priorities
of tasks can change as time progresses and also when tasks are
executed.

In general, PBS has to go through three steps: Feasibility
analysis, Schedule construction, and Dispatching. The feasibility
analysis is done to check the schedulability of a task (i.e., whether
or not the time constraints of the task can be satisfied). This
feasibility test is usually done when the task arrives to the system.
These tests are more suited for periodic tasks since they have
a periodic activation and the resources they need can be easily
calculated and reserved. In planning-based approaches, this test is
also applied to aperiodic tasks.

The schedule construction is the process of ordering the tasks to
be executed. This order is stored for use in the dispatch step. This
schedule construction is usually done when dynamic priorities are
assigned. Finally, the dispatch step is in charge of deciding which
tasks to execute next. This dispatch process may be to follow the
established plan, depending on whether the system is preemptive

1 Worst-case execution time: the maximum length of time a task could take to
execute on a specific hardware platform [12].



Download English Version:

https://daneshyari.com/en/article/10330593

Download Persian Version:

https://daneshyari.com/article/10330593

Daneshyari.com

https://daneshyari.com/en/article/10330593
https://daneshyari.com/article/10330593
https://daneshyari.com

