Future Generation Computer Systems 29 (2013) 158-169

B —

Contents lists available at SciVerse ScienceDirect o
FiGICIS!

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs e

Deadline-constrained workflow scheduling algorithms for Infrastructure as a
Service Clouds

Saeid Abrishami®*, Mahmoud Naghibzadeh?, Dick H.J. Epema®

@ Department of Computer Engineering, Engineering Faculty, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran
b parallel and Distributed Systems Group, Faculty EEMCS, Delft University of Technology, Mekelweg 4, 2628 CD, Delft, The Netherlands

ARTICLE INFO ABSTRACT
Aftid? history: The advent of Cloud computing as a new model of service provisioning in distributed systems encourages
Received 3 May 2011 researchers to investigate its benefits and drawbacks on executing scientific applications such as

Received in revised form

21 November 2011

Accepted 14 May 2012
Available online 23 May 2012

workflows. One of the most challenging problems in Clouds is workflow scheduling, i.e., the problem
of satisfying the QoS requirements of the user as well as minimizing the cost of workflow execution.
We have previously designed and analyzed a two-phase scheduling algorithm for utility Grids, called
Partial Critical Paths (PCP), which aims to minimize the cost of workflow execution while meeting a user-
defined deadline. However, we believe Clouds are different from utility Grids in three ways: on-demand

Keywords: L. .. .
Clgud computing resource provisioning, homogeneous networks, and the pay-as-you-go pricing model. In this paper, we
laasS Clouds adapt the PCP algorithm for the Cloud environment and propose two workflow scheduling algorithms: a

one-phase algorithm which is called IaaS Cloud Partial Critical Paths (IC-PCP), and a two-phase algorithm
which is called [aaS Cloud Partial Critical Paths with Deadline Distribution (IC-PCPD2). Both algorithms
have a polynomial time complexity which make them suitable options for scheduling large workflows.
The simulation results show that both algorithms have a promising performance, with IC-PCP performing

Grid computing
Workflow scheduling
QoS-based scheduling

better than IC-PCPD2 in most cases.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Cloud computing [1] is the latest emerging trend in distributed
computing that delivers hardware infrastructure and software
applications as services. The users can consume these services
based on a Service Level Agreement (SLA) which defines their
required Quality of Service (QoS) parameters, on a pay-as-you-go
basis. Although there are many papers that address the problem of
scheduling in traditional distributed systems like Grids, there are
only a few works on this problem in Clouds. The multiobjective
nature of the scheduling problem in Clouds makes it difficult
to solve, especially in the case of complex jobs like workflows.
Furthermore, the pricing model of the most current commercial
Clouds, which charges users based on the number of time intervals
that they have used, makes the problem more complicated. In this
paper we propose two workflow scheduling algorithms for the
Cloud environment by adapting our previous algorithm for utility
Grids, called Partial Critical Paths (PCP), and we evaluate their
performance on some well-known scientific workflows.

Workflows constitute a common model for describing a wide
range of scientific applications in distributed systems [2]. Usually, a

* Corresponding author.
E-mail addresses: s-abrishami@um.ac.ir (S. Abrishami), naghibzadeh@um.ac.ir
(M. Naghibzadeh), d.h.j.epema@tudelft.nl (D.H.J. Epema).

0167-739X/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2012.05.004

workflow is described by a Directed Acyclic Graph (DAG) in which
each computational task is represented by a node, and each data
or control dependency between tasks is represented by a directed
edge between the corresponding nodes. Due to the importance
of workflow applications, many Grid projects such as Pegasus [3],
ASKALON [4], and GrADS [5] have designed workflow management
systems to define, manage, and execute workflows on the Grid.
Recently, some researchers consider the benefits of using Cloud
computing for executing scientific workflows [6-8]. Currently,
there exist several commercial Clouds, such as Amazon, which
provide virtualized computational and storage hardware on top of
which the users can deploy their own application and services. This
new model of service provisioning in distributed systems, which
is known as Infrastructure as a Service (IaaS) Clouds, has some
potential benefits for executing scientific workflows [7,8]. First,
users can dynamically obtain and release resources on demand,
and they will be charged on a pay-as-you-go basis. This helps the
workflow management system to increase or decrease its acquired
resources according to the needs of the workflow and the user’s
deadline and budget. The second advantage of the Clouds is direct
resource provisioning versus the best-effort method in providing
resources in community Grids. This feature can significantly
improve the performance of scheduling interdependent tasks of
a workflow. The third advantage is the illusion of unlimited
resources [7]. It means the user can ask for any resource whenever
he needs it, and he will certainly (or with a very high possibility)


http://dx.doi.org/10.1016/j.future.2012.05.004
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:s-abrishami@um.ac.ir
mailto:naghibzadeh@um.ac.ir
mailto:d.h.j.epema@tudelft.nl
http://dx.doi.org/10.1016/j.future.2012.05.004

S. Abrishami et al. / Future Generation Computer Systems 29 (2013) 158-169 159

obtain that service. However, the actual number of resources a user
can acquire and his waiting time is still an open problem [8]. The
latest version of some of the Grid workflow management systems,
like Pegasus, VGrADS [9], and ASKALON [10] also supports running
scientific workflows on Clouds.

Workflow scheduling is the problem of mapping each task to
a suitable resource and of ordering the tasks on each resource
to satisfy some performance criterion. Since task scheduling is a
well-known NP-complete problem [11], many heuristic methods
have been proposed for homogeneous [12] and heterogeneous
distributed systems like Grids [13-16]. These scheduling methods
try to minimize the execution time (makespan) of the workflows
and as such are suitable for community Grids. Most of the current
workflow management systems, like the ones mentioned above,
use such scheduling methods. However, in Clouds, there is another
important parameter other than execution time, i.e., economic
cost. Usually, faster resources are more expensive than slower
ones, therefore the scheduler faces a time-cost tradeoff in
selecting appropriate services, which belongs to the multi-criteria
optimization problems family. A taxonomy of the multi-criteria
workflow scheduling on the Grid can be found in [17], followed
by a survey and analysis of the existing scheduling algorithms and
workflow management systems.

In our previous work [18], we proposed a QoS-based workflow
scheduling algorithm on utility Grids, called the Partial Critical
Paths (PCP) algorithm, which aims to create a schedule that
minimizes the total execution cost of a workflow, while satisfying
a user-defined deadline. The PCP algorithm comprises two main
phases: Deadline Distribution, which distributes the overall
deadline of the workflow across individual tasks, and Planning,
which schedules each task on the cheapest service that can
execute the task before its subdeadline. However, there are
three significant differences between the current commercial
Clouds and the utility Grid model for which we devised the
PCP algorithm. The first difference is the on-demand (dynamic)
resource provisioning feature of the Clouds, which enables the
scheduling algorithm to determine the type and the amount
of required resources, while in utility Grids, there are pre-
determined and limited resources with restricted available time
slots. This property gives the illusion of unlimited resources to
the Cloud users [7]. The second distinction is the (approximately)
homogeneous bandwidth among services of a Cloud provider,
versus the heterogeneous bandwidth between service providers
in the utility Grids. The third (and most important) difference is
the pay-as-you-go pricing model of current commercial Clouds
which charges users based on the number of the time intervals that
they have used. Since the time interval is usually long (e.g., one
hour in Amazon EC2) and the user is completely charged for
the last time interval even if he uses only a small fraction of it,
the scheduling algorithm should try to utilize the last interval
as much as possible. Considering these differences, we adapt
the PCP algorithm and propose two novel workflow scheduling
algorithms for IaaS Clouds, which are called the IaaS Cloud-Partial
Critical Paths (IC-PCP) and the laaS Cloud-Partial Critical Path
with Deadline Distribution (IC-PCPD2). IC-PCPD2 is a two-phase
algorithm similar to the original PCP, but the deadline distribution
and the planning phases are modified to adapt to the Cloud
environment. On the other hand, IC-PCP is a one-phase algorithm
which uses a similar policy to the deadline distribution phase
of the original PCP algorithm, except that it actually schedules
each workflow task, instead of assigning a subdeadline to it.
Because there is no competitive algorithm in this area, we have
compared our algorithms with a modified version of the Loss
scheduling algorithm [19] (i.e., IC-Loss) through simulation. The
simulation results on five well-known scientific workflow show
that the performance of IC-PCP algorithm is better than that of the
IC-PCPD2 and IC-Loss algorithms.

The remainder of the paper is organized as follows. Section 2
describes our system model, including the application model, the
Cloud model, and the objective function. The proposed scheduling
algorithms are explained in Section 3. A performance evaluation
is presented in Section 4. Section 5 reviews related work and
Section 6 concludes.

2. Scheduling system model

The proposed scheduling system model consists of an appli-
cation model, an IaaS Cloud model, and a performance criterion
for scheduling. An application is modeled by a directed acyclic
graph G(T, E), where T is a set of n tasks {t1, to, ..., t,}, and E is
a set of dependencies. Each dependency e; ; = (tl-, tj) represents a
precedence constraint which indicates that task t; should complete
executing before task ; can start. In a given task graph, a task with-
out any parent is called an entry task, and a task without any child
is called an exit task. As our algorithm requires a single entry and
a single exit task, we always add two dummy tasks tenery and fey
to the beginning and the end of the workflow, respectively. These
dummy tasks have zero execution time and they are connected
with zero-weight dependencies to the actual entry and exit tasks.

Our Cloud model consists of an laaS provider which offers
virtualized resources to its clients. In particular, we assume that the
service provider offers a computation service like Amazon Elastic
Compute Cloud (EC2) [20] which we can use to run the workflow
tasks, and a storage service like Amazon Elastic Block Store
(EBS) [21] which can be attached to the computation resources as
alocal storage device to provide enough space for the input/output
files. Furthermore, the service provider offers several computation
services S = {s1, S, ..., S} with different QoS parameters such
as CPU type and memory size, and different prices. Higher QoS
parameters, e.g., a faster CPU or more memory, mean higher prices.
We assume that there is no limitation on using each service, i.e., the
user can launch any number of instances from each computation
service at any time. Some service providers may limit the total
number of allocated services to a user, e.g., Amazon currently limits
its common users to a maximum of 20 instances of EC2 services.
This does not affect our algorithms, unless it limits the number of
instances of a particular service. In other words, if the total number
of required services (determined by the scheduling algorithm) is
more than the maximum limitation of the service provider, then
the workflow cannot execute on that provider with the required
QoS.

The pricing model is based on a pay-as-you-go basis similar to
the current commercial Clouds, i.e., the users are charged based
on the number of time intervals that they have used the resource,
even if they have not completely used the last time interval. We
assume each computation service s;, has a cost ¢; for each time
interval. Besides, ET(t;, s;) is defined as the execution time of task
t; on computation service s;. All computation and storage services
of a service provider are assumed to be in the same physical region
(such as Amazon Regions), so the average bandwidth between the
computation services is roughly equal. With this assumption, the
data transfer time of a dependency e;;, TT (e,-j), only depends on
the amount of data to be transferred between corresponding tasks,
and it is independent of the services that execute them. The only
exception is when both tasks t; and t; are executed on the same

instance of a computation service, where TT (e;;) becomes zero.
Furthermore, the internal data transfer is free in most real Clouds
(like Amazon), so the data transfer cost is assumed to be zero in
our model. Of course, the service provider charges the clients for
using the storage service based on the amount of allocated volume,
and possibly for the number of 1/O transactions from/to outside
the Cloud. Since these parameters have no effect on our scheduling
algorithm, we do not consider them in the model.

The last element in our model is the performance criterion
which is to minimize the execution cost of the workflow, while
completing the workflow before the user specified deadline.



Download English Version:

hitps://daneshyari.com/en/article/10330600

Download Persian Version:

https://daneshyari.com/article/10330600

Daneshyari.com


https://daneshyari.com/en/article/10330600
https://daneshyari.com/article/10330600
https://daneshyari.com

