
Future Generation Computer Systems 29 (2013) 170–181

Contents lists available at SciVerse ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Task granularity policies for deploying bag-of-task applications on global grids
Nithiapidary Muthuvelu a,∗, Christian Vecchiola b, Ian Chai a, Eswaran Chikkannan a, Rajkumar Buyya b

a Multimedia University, Persiaran Multimedia, 63100 Cyberjaya, Selangor, Malaysia
b Cloud Computing and Distributed Systems (CLOUDS) Laboratory, Department of Computer Science and Software Engineering, The University of Melbourne, Carlton,
Victoria 3053, Australia

a r t i c l e i n f o

Article history:
Received 23 July 2010
Received in revised form
20 March 2012
Accepted 22 March 2012
Available online 5 April 2012

Keywords:
Grid computing
Meta-scheduler
Lightweight task
Task granularity
Task group deployment

a b s t r a c t

Deploying lightweight tasks individually on grid resources would lead to a situation where
communication overhead dominates the overall application processing time. The communication
overhead can be reduced if we group the lightweight tasks at the meta-scheduler before the deployment.
However, there is a necessity to limit the number of tasks in a group in order to utilise the resources and
the interconnecting network in an optimal manner. In this paper, we propose policies and approaches
to decide the granularity of a task group that obeys the task processing requirements and resource-
network utilisation constraints while satisfying the user’s QoS requirements. Experiments on bag-of-task
applications reveal that the proposed policies and approaches lead towards an economical and efficient
way of grid utilisation.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Grid computing [1–3] connects geographically distributed
heterogeneous resources, forming a platform to run resource-
intensive applications. A grid application contains a large number
of tasks [4,5]; a meta-scheduler transmits each task file to a
grid resource for execution and retrieves the processed task
from the resource. The overall processing time of a task includes
task invocation at the meta-scheduler, scheduling time, task file
transmission to a resource, waiting time at the resource’s local job
queue, task execution time, and output file transmission to the
meta-scheduler.

A lightweight or fine-grain task requires minimal execution
time (e.g. less than one minute). Executing a large number of
lightweight tasks one-by-one on a grid would result in a low
computation–communication ratio as the total communication
time will be high due to the overhead involved in handling each
small-scale task [6]; the term computation refers to the task
execution time, whereas communication refers to the task and
output file transmission time. This issue can be explained from two
point of views.

• The communication overhead increases proportionallywith the
number of tasks.

∗ Corresponding author. Tel.: +60 383125429; fax: +60 383125264.
E-mail addresses: nithiapidary@mmu.edu.my, m.nithia@gmail.com

(N. Muthuvelu).

• The processing capability of a resource and the capacity of an
interconnecting network will not be optimally utilised when
dealing with lightweight tasks. For example:
– assume that a high-speed machine allows a user to utilise

its CPU for x seconds. Executing lightweight tasks one at
a time on the machine will miss the full processing speed
(e.g. x∗ Million Instructions per Second) of the machine
within x seconds due to the overhead involved in invoking
and executing each task;

– transmitting task and output files one-by-one to and from a
resource may underutilise the achievable bandwidth if the
files are very small.

Hence, deploying lightweight tasks on a grid would lead
to inefficient resource and network utilisation, resulting in an
unfavourable application throughput. This statement is proven
with experiments in Section 5.3.1 of this paper. The experiments
show that grouping the lightweight tasks before the deployment
increases resource utilisation and reduces the overall application
processing time significantly. This stimulates the need for optimal
task granularity (the number of tasks that should be grouped in a
batch) for each resource at runtime.

In this paper, we present the factors that highly affect the
decision on task granularity which result in a set of policies for
determining task granularities at runtime. The policies are then
incorporated in the scheduling strategies of a meta-scheduler
to be tested in a grid environment. Our goal is to reduce the
overall application processing time while maximising the usage of

0167-739X/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2012.03.022

http://dx.doi.org/10.1016/j.future.2012.03.022
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:nithiapidary@mmu.edu.my
mailto:m.nithia@gmail.com
http://dx.doi.org/10.1016/j.future.2012.03.022


N. Muthuvelu et al. / Future Generation Computer Systems 29 (2013) 170–181 171

resource and network capacities, and obeying the quality of service
(QoS) requirements.

The scheduling strategies are designed to handle computation-
intensive, parametric and non-parametric sweep applications.
They assume that all the tasks in an application are independent,
computational, and have a similar compilation platform.

The rest of the paper is organised as follows: The related
work is explained in Section 2. Section 3 describes the factors
involved in deciding the task granularity followed by the task
granularity policies. Section 4 presents the approaches to deal with
the issues induced by the task granularity policies. The process
flow of the proposed meta-scheduler is explained in a subsection
of Section 4. Section 5 brings the performance analysis of the
scheduling strategies. Finally, Section 6 concludes the paper by
suggesting future work.

2. Related work

Task granularity adaptation has been one of themost important
research problems in batch processing.

Algorithms pertaining to sequencing tasks in multiple batches
for executions on a single machine to minimise the processing
delays were demonstrated in [7,8]. Following from these exper-
iments, Mosheiov and Oron proposed an additional parameter,
maximum/minimum batch size, to control the number of tasks to
be grouped in a batch in [9].

James et al. [10] scheduled equal numbers of independent
jobs using various scheduling algorithms to a cluster of nodes.
However, their attempt caused an additional overhead as thenodes
were required to be synchronised after each job group execution
iteration.

Sodan et al. [11] conducted simulations to determine the
optimal number of jobs in a batch to be executed in a parallel
environment. The total number of jobs in a batch is optimised
based on minimum and maximum group size, average run-time
of the jobs, machine size, number of running jobs in the machine,
and minimum and maximum node utilisation. These simulations
did not consider varying network usage or bottlenecks. In addition,
the total number of jobs in a batch is constrained with static upper
and lower bounds.

Work towards adapting computational applications to con-
stantly changing resource availability has been conducted by
Maghraoui et al. [12]. A specific API with special constructs is used
to indicate the atomic computational units in each user job. Upon
resource unavailability, the jobs are resized (split or merged) be-
fore being migrated to another resource. The special constructs in
a job file indicates the split or merge points.

A few simulations have been conducted to realise the effect
of task grouping in a grid [13]. The tasks were grouped based on
resource’sMillion Instructions Per Second (MIPS) and task’sMillion
Instructions (MI). MIPS or MI are not the preferred benchmark
matrices as the execution times for two programs of similar MI but
with different compilation platforms can differ [14]. Moreover, a
resource’s full processing capacitymay not be available all the time
because of I/O interrupt signals.

In 2008 [15], we designed a scheduling algorithm that
determines the task granularity based on QoS requirements, task
file size, estimated task CPU time, and resource constraints on
maximum allowed CPU time, maximum allowed wall-clock time,
maximum task file transmission time, and task processing cost
per time unit. The simulation shows that the scheduling algorithm
performs better than conventional task scheduling by 20.05% in
terms of overall application processing time when processing 500
tasks. However, it was assumed that the task file size is similar
to the task length which is an oversimplification as the tasks may
contain massive computation loops.

In our previous work [16], we enhanced our scheduling
algorithm by treating the file size of a task separately from its
processing needs. The algorithm also considers two additional
constraints: space availability at the resource and output file
transmission time. In addition, it is designed to handle unlimited
number of user tasks arriving at the scheduler at runtime.

This paper is an improvement of our previous work [16,17].
We enhanced our scheduling strategies to coordinate with cluster-
based resources without synchronisation overhead. The strategies
support the tasks fromboth parametric and non-parametric sweep
applications. We developed a meta-scheduler, implemented our
proposed task grouping policies and approaches, and tested the
performance in a real grid environment. The user tasks are
transparent to the meta-scheduler and there is no need for a
specific API to generate the tasks.

3. Factors influencing the task granularity

Table 1 depicts the terms or notations and the corresponding
definitions that will be used throughout this paper.

Our aim is to groupmultiple fine-grain tasks into a batch before
deploying the batch on a resource. When adding a task into a
batch or a group, the processing need of the batch will increase.
This demands us to control the number of tasks in a batch or the
resulting granularity. As a grid resides in a dynamic environment,
the following factors affect the task granularity for a particular
resource:

• The processing requirements of the tasks in a grid application.
• The processing speed and overhead of the grid resources.
• The resource utilisation constraints imposed by the providers

to control the resource usage [18].
• The bandwidths of the interconnecting networks [19].
• The QoS requirements of an application [20].

Fig. 1 depicts the information flow pertaining to the above-
mentioned factors in a grid environment. The grid model
contains three entities: User Application; Meta-Scheduler; and
Grid Resources. (1) The first input set to themeta-scheduler comes
from the user application which contains a bag of tasks (BoT).

• Tasks: A task (T ) contains files relevant to the execution
instruction, library, task or program, and input data.
• Task Requirements: Each task is associated with task require-

ments or characteristics which consist of the size of the task file
(TFSize), the estimated size of the output file (OFSize), and the
estimated CPU time of the task (ETCPUTime). The ETCPUTime is
an estimation given by the user based on sample task execu-
tions on the user’s local machine. In our context, the ETCPUTime
of a task is measured at the application or task level (not at pro-
cessor level): from the start of a task execution till the end of
the task execution.
• QoS: The user budget (UBudget) and deadline (UDeadline)

allocated for executing all the tasks in the BoT.

(2) The second input set to the meta-scheduler is from the
grid resources (GR) participating in the environment. The resource
providers impose utilisation constraints on the resources in order
to avoid the resources from being overloaded or misused [18,21].
The utilisation constraints of a particular resource, R, are:

• MaximumAllowed CPU Time (MaxCPUTime): Themaximum time
allowed for the execution of a task or a batch at a resource.
• Maximum Allowed Wall-Clock Time (MaxWCTime): The maxi-

mum time a task or a batch can spend at the resource. This en-
compasses task CPU time and task processing overhead at the
resource (task waiting time, and task packing and unpacking
overhead).



Download English Version:

https://daneshyari.com/en/article/10330601

Download Persian Version:

https://daneshyari.com/article/10330601

Daneshyari.com

https://daneshyari.com/en/article/10330601
https://daneshyari.com/article/10330601
https://daneshyari.com

