
Future Generation Computer Systems 29 (2013) 242–249

Contents lists available at SciVerse ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

A P2P computing system for overlay networks
Grzegorz Chmaj, Krzysztof Walkowiak ∗

Department of Systems and Computer Networks, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland

a r t i c l e i n f o

Article history:
Received 30 May 2010
Received in revised form
26 August 2010
Accepted 8 November 2010
Available online 24 November 2010

Keywords:
Computing systems
P2P
Simulation
Overlay networks

a b s t r a c t

A distributed computing system is able to perform data computation and distribution of results at the
same time. The input task is divided into blocks, which are then sent to systemparticipants that offer their
resources in order to perform calculations. Next, a partial result is sent back by the participants to the task
manager (usually one central node). In the case when system participants want to get the final result, the
central node may become overloaded, especially if many nodes request the result at the same time. In
this paper we propose a novel distributed computation system, which does not use the central node as
the source of the final result, but assumes that partial results are sent between system participants. This
way we avoid overloading the central node, as well as network congestion. There are two major types of
distributed computing systems: grids and Peer-to-Peer (P2P) computing systems. In this work we focus
on the latter case. Consequently, we assume that the computing system works on the top of an overlay
network.We present a complete description of the P2P computing system, considering both computation
and result distribution. To verify the proposed architecture we develop our own simulator. The obtained
results show the system performance expressed by the operation cost for various types of network flows:
unicast, anycast and Peer-to-Peer. Moreover, the simulations prove that our computing system provides
about 66% lower cost compared to a centralized computing system.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Distributed computing systems play a very significant role in
today’s academic and business world. These systems are applied
to compute tasks requiring huge computation power, which is not
available on a single machine (even on a super-computer). They
are mainly divided into two categories: grid computing systems
and Peer-to-Peer computing systems. Grids are constituted by or-
ganizations and institutions and contain a small number (usually
up to hundreds) of machines connected by a computer network
of high capacity [1,2]. Grids may share many kinds of resources:
computing power, disk space, data, sensors, etc. [3]. Resources are
centrally managed using a Resource Management System (RMS)
that covers the following aspects: customizability, extensibility,
scalability, etc. [4]. The scheduling is an important element of the
grid that has a large influence on the system’s efficiency [2,5,6].
The scheduling process should include such issues as: resource
discovery, information gathering and task execution, concurrently
with authorization, application management and monitoring [5].
Many previous papers assume simplifications of the scheduling
model, correspondingly in this paper we focus on one aspect of
scheduling, i.e., assignment of computational tasks to comput-
ing nodes. Constituting the grid system is a sophisticated task

∗ Corresponding author. Tel.: +48 71 320 3539; fax: +48 71 320 2902.
E-mail address: krzysztof.walkowiak@pwr.wroc.pl (K. Walkowiak).

regarding both technical and financial aspects. Therefore, other
distributed computing systems — like Peer-to-Peer (P2P) comput-
ing systems — have emerged in recent years [7]. These systems are
built using many private machines, which are most often home
computers (PC or Macintosh) or even gaming consoles. The user
installs a special software on her/his machine and registers into
a selected computing project. Then, she/he receives data chunks
to compute and sends the results back to the central node, where
partial results are combined into the final result. Network connec-
tions used in P2P computing systems are regular home access links
such as DSL or cable. This approach is much simpler than grids,
since the only requirement is to provide a suitable software. The
P2P computing approach allows for unreliability of participants—
they may freely join and leave the computing system, which is not
used in grid systems. The most popular P2P computing project
is SETI@home (started in 1999), which aims at looking for ex-
tra terrestrial intelligence [8]. It is based on a BOINC architecture
[7,9]. Projects based on the BOINC aggregate almost 2million users
all over the world with over 5 million hosts having 5 TeraFLOPS
of power (April 2010). Seti@home is the largest BOINC P2P com-
puting project (over 1 million of users), other popular projects are:
Einstein@home (250 thousand users—search for pulsar stars) and
Climate Prediction (224 thousand users—climate change predic-
tion). There are also other Peer-to-Peer computing frameworks, in-
cluding systems dedicated to compute one project, e.g., [10,11].

Grid systems are mostly centrally managed, which means that
there is one central node, which takes care of task preparation,

0167-739X/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2010.11.009

http://dx.doi.org/10.1016/j.future.2010.11.009
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:krzysztof.walkowiak@pwr.wroc.pl
http://dx.doi.org/10.1016/j.future.2010.11.009


G. Chmaj, K. Walkowiak / Future Generation Computer Systems 29 (2013) 242–249 243

scheduling and managing of results. P2P computing systems may
also use this model, but as home users contribute their resources,
they may also want to participate in the results. This entails the
problem of distributing the complete result to each participant. In
the case when the result is combined at one central node, a huge
number of participants interested in the results and requesting
it from one central machine may cause a server overload or
even denial of service. For instance, the authors of the Electric
Sheep project [12] propose a distributed computing system, which
renders artificial forms of life—and allows participants to get
complete animation. The animation is rendered by participants,
but combined into the final result at the central node. The
authors underline that their system struggles with the problem of
downloading the final animation from the central node and plan to
use a BitTorrent [13] protocol to solve this issue.

In this paper we propose a new idea of a distributed comput-
ing system. The main novelty is that the system is not centrally
managed—partial results are not sent back to the central node,
but transferred between nodes directly. Similar to the BitTorrent
protocol [13], our system uses a special node called a tracker. The
objective of the tracker in our system is twofold. First, the tracker
performs the scheduling, i.e., it assigns individual tasks to com-
puting nodes according to received requests. Second, the tracker
maintains and offers the current database including information
on location of already calculated results.

Distributed computing systems can be modeled like other
network systems using a static approach, which assumes the
creation of an optimization model (including decision variables,
constraints and objective functions) [14,15]. Another popular
approach to research on distributed systems is simulation, which
applies a dedicated software and aims to act as close to a real
(modeled) system as possible.

The proposed P2P computing systemworks in an overlay mode
and uses the Internet as a transport layer. The overlay approach as-
sumes that the network includes two layers: an upper application
layer and a lower transport layer [16,17]. The transport layer pro-
vides direct connectivity between overlay nodes including routing.
Moreover, some Quality of Service guarantees can be assured by
the transport layer. Each node (participant of the computing sys-
tem) is connected to the overlay network by an access link with
specified download and upload bandwidth expressed in bps.

The major motivation for this paper is to propose a novel ap-
proach to distributed computing systems, as today’s systems do
not provide effective mechanisms to deliver results of compu-
tations to all participants. The main contributions of this paper
are as follows. (1) A novel architecture for a P2P computing sys-
tem considering both computation and result distribution. (2) De-
cision strategies developed for computing nodes participating in
the system. (3) A simulator of the proposed distributed comput-
ing system implementing various types of network flows (unicast,
anycast and P2P). (4) Simulation results showing the influence of
the type of network flow and decision policies.

The remainder of the paper is as follows. In Section 2 we
introduce the P2P computing system in detail. Section 3 includes
the description of the simulator developed to examine the
proposed system. In Section 4 we show results of the experiments.
Section 5 includes related work. Finally, the last section concludes
this work.

2. A P2P computing system architecture

In this section we present an architecture of a new P2P
computing system. Themain objective of the system is tominimize
the OPEX cost of the system compromising both: computing and
transfer costs. The former element refers to operating costs related
to computation (e.g. energy, maintenance). The latter element is

the delivery cost in the overlay network usually defined for each
pair of nodes (e.g., lease cost of the access links). We assume that
the system is collaborative and all participants want to receive the
whole result. However, our architecture could also be easily used
to model the situation when only some of participants download
the result.

The system consists of many machines connected into one
logical structure. It takes a computational task as the input, which
is then computed by participants. As delivery of all results to each
participant introduces significant network traffic, it is essential to
provide effective distribution algorithms. Like in most distributed
computation systems (e.g., Seti@Home and many others based
on the BOINC [7] framework), the input data is divided into
uniform blocks (we call them source blocks), which are sent to
system participants in order to be computed. BOINC systems
assume that the result of computation (a result block) is sent
back to the central node, which collects all results for further
processing and analysis. On the contrary, our research considers
a situation, when all system participants are interested in the
final results. Thus, the results are not delivered to the central
node, but they are distributed over the network to all requesting
users. As an examplewe canmention rendering distributed images
or distributed rendering of 3d movies, where all participating
users want to see the result of the rendering. In the case when
the central node is used to combine partial results into the final
result, downloads performed by many users cause high load and
congestion problems at the central node. We investigate how to
bypass the central node and use the advantages of various flows,
to optimize distribution of results.

Let us now describe the details of our system architecture. It
contains two types of elements:

• nodes—regularmachines that do the computation and exchange
results between each other;

• tracker—a central element, which assigns source blocks to
nodes. It is also used as a database including the location of all
results, what is similar to the idea of the tracker node in the
BitTorrent protocol.

A node requests the source block from the tracker when it
has free computation resources available (operation 1 in Fig. 1).
The tracker responds with the source block if available (operation
2) or signals that no more source blocks are available for
computation, i.e., all blocks included in the current computing
project have been assigned to nodes for computation. When the
node receives such information, it stops requesting new blocks
from the tracker. The node has to compute at least one source block
(operation 3), to become a participant of the project. The tracker
stores information about all participants and does not provide
information about result locations for nodes, which are not present
on the participants’ list. This way the system protects itself against
unfairness—every node has to contribute to the system in order
to obtain final output results. A node that wants to get the result,
which was computed by another node, sends a location request to
the tracker (operation 4). Then, the tracker responds with known
locations (operation 5). The node selects one of them according
to the selection policy (decision strategy). To make the tracker
locations’ list complete, the node sends an update to the tracker
every time it acquires a new block available to send. This happens
in two cases: the node has finished computing the source block or
the node has finished downloading the result block from another
node.

All elements of the system (nodes and tracker) are connected
through the overlay network, which is the Internet in our case. This
way we consider a network as one unified structure, that provides
a direct connection between every two elements connected to
this network. We do not consider how such a connection (in our



Download	English	Version:

https://daneshyari.com/en/article/10330608

Download	Persian	Version:

https://daneshyari.com/article/10330608

Daneshyari.com

https://daneshyari.com/en/article/10330608
https://daneshyari.com/article/10330608
https://daneshyari.com/

