Future Generation Computer Systems 29 (2013) 323-329

Future Generation Computer Systems

B —

Contents lists available at SciVerse ScienceDirect o
FiGICIS!

journal homepage: www.elsevier.com/locate/fgcs ==

Automatic software deployment using user-level virtualization for

cloud-computing

Youhui Zhang*, Yanhua Li, Weimin Zheng

Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China

ARTICLE INFO

ABSTRACT

Article history:

Received 1 November 2010
Received in revised form

26 March 2011

Accepted 5 August 2011

Available online 5 September 2011

Keywords:

Cloud computing
User-level virtualization
Virtual machine
Deployment

Cloud Computing offers a flexible and relatively cheap solution to deploy IT infrastructure in an elastic
way. An emerging cloud service allows customers to order virtual machines to be delivered virtually in
the cloud; and in most cases, besides the virtual hardware and system software, it is necessary to deploy
application software in a similar way to provide a fully-functional work environment. Most existing
systems use virtual appliances to provide this function, which couples application software with virtual
machine (VM) image(s) closely.

This paper proposes a new method based on the user-level virtualization technology to decouple
application software from VM to improve the deployment flexibility. User-level virtualization isolates
applications from the OS (and then the lower-level VM); so that a user can choose which software will be
used after setting the virtual machines’ configuration. Moreover, the chosen software is not pre-installed
(or pre-stored) in the VM image; instead, it can be streamed from the application depository on demand
when the user launches it in a running VM to save the storage overhead. During the whole process, no
software installation is needed. Further, the enormous existing desktop software can be converted into
such on-demand versions without any modification of source code.

We present the whole framework, including the application preparation, the runtime system design,
the detailed deployment and usage workflow, and some optimizations. At last, test results show that this
solution can be efficient in performance and storage.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Infrastructure cloud service providers (e.g., [1,2]) deliver virtual
hardware and software in their datacenters, based on the demand
from customers. Then, customers avoid capital expenditure by
renting usage from the provider and they consume resources as
a service.

Usually, besides virtual hardware and system software, it
is necessary to deploy application software in a similar way;
therefore customers can get a fully-functional work environment
conveniently with the required application software.

Most existing solutions allow cloud customers to order Virtual
Appliances (VAs) [2-4] to be delivered virtually on the cloud. For
example, VA marketplaces [2,5,6] provide lots of categories of
appliances, and each is a pre-built software solution, comprised
of one or more Virtual Machines that are packaged. VA-based
methods can reduce time and expenses remarkably associated
with application deployment.

* Corresponding author. Tel.: +86 10 62783505x3.
E-mail address: zyh02@tsinghua.edu.cn (Y. Zhang).

0167-739X/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2011.08.012

However, because VA couples the application software and VMs
closely, it also has some drawbacks:

(1) Lack of flexibility. For example, a customer needs software A
and B to work together in a virtual machine, while the provider
only has two separate VAs containing A and B respectively. Then,
the provider has to create a new VM template to combine A and B
together. In theory, such combinations are countless.

(2) Inefficiency of storage.

Each VA comprises one VM image at least, which means the OS
has to be combined in the image. Therefore, the storage overhead
is larger, although some technologies (e.g., Just enough OS [7],
De-duplication [8,9]) have been employed to reduce the overhead.

The essential reason of these drawbacks lies in that the VA
solution heavily depends on the virtual machine technology and
the latter only isolates system software from hardware. Therefore
application software has to be packaged in the whole system for
deployment.

To solve this problem, this paper introduces a double-isolation
mechanism that uses the user-level virtualization technology to
further isolate application software from OS, while the VM-level
isolation is still kept. Therefore, application software can be de-
ployed in a fine granularity to increase the flexibility and decrease


http://dx.doi.org/10.1016/j.future.2011.08.012
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:zyh02@tsinghua.edu.cn
http://dx.doi.org/10.1016/j.future.2011.08.012

324 Y. Zhang et al. / Future Generation Computer Systems 29 (2013) 323-329

the storage overhead. In this paper, we call such application soft-
ware as on-demand software.

Based on this design philosophy, we make the following contri-
butions:

(1) The whole deployment framework based on the double-isolation
mechanism.

The deployment of application software on user-level virtual-
ization is the focus. It includes the on-demand software prepa-
ration, deployment, runtime system, customization and usage
accounting.

(2) User-level virtualization of on-demand software.

Some essential technologies, like converting legacy software
into the on-demand style or the runtime system of user-level vir-
tualization, are implemented. Especially, our methods can support
existing application software without any modification of source
code.

(3) A central distribution system for on-demand software.

One or more central data servers are used to provide soft-
ware on demand for the deployed virtual machines, rather than
place software within VMs in advance. Because of the common-
ality of frequently-used applications in the Cloud Computing en-
vironment, this technology can decrease the storage consumption
significantly.

Moreover, some access optimizations, including the content-
addressable storage and local cache, are presented, too.

(4) The system prototype.

In addition, tests show that this solution is efficient in perfor-
mance and storage.

In the following sections, we first present the whole framework
and the user-level virtualization technology for on-demand
software. The central distribution system for Cloud Computing and
the related optimizations are given in Section 3. The prototype is
introduced in Section 4, as well as the performance tests. Section 5
gives related work; the conclusion and future work are presented
finally.

2. The framework
2.1. Software deployment overview

To deploy on-demand software in the Cloud Computing envi-
ronment, it is necessary to provide a system to own the following
functions:

(1) Software preparation.

Most existing software needs to be installed before it can
run normally. However, in our design, the on-demand software
requested by a customer can be used instantly without any
installation process. Thus, we should convert software into the on-
demand mode in advance, and all on-demand software is stored in
the software depository for users’ selection.

The details are presented in Section 2.2.

(2) Software selection.

For most existing cloud service providers, a customer usually
chooses one or more VAs before deployment, which means that the
required software and its lower-level VM(s) are selected at once.

In contrast, we provide a more flexible selection procedure: a
customer can choose the wanted 0S, as well as any number of
software in separated stages. For example, Lisa orders a Windows
VM as her remote work environment on the cloud; and then
she can select any on-demand software (only if it can run in the
Windows OS) that she will use in the VM. It means that we can
provide any combination of VM and software, rather than depend
on the limited number of existing VM templates.

(3) On-demand deployment and usage accounting.

Virtual Appliance On-demand software
Part 3 Part 3
Part 2 Part 2 User-level
Isolation
Part 1
os
Os

Fig. 1. On-demand software and virtual appliance.

After the preparation and selection, software is not to be stored
in the VM image (like the Virtual Appliance does). In contrast,
one or more central data servers are used to provide software on
demand for the deployed virtual machines. It means only when
the customer actually uses the chosen software, will it be streamed
from the data server and run locally without installation. In other
words, on-demand software is stored remotely and run locally; a
local cache is also used to improve the access performance.

Inherently, this deployment mode enables a fine-grained billing
mechanism: the accurate running time of any on-demand software
can be gotten and used as the accounting basis.

The technical details are presented in Section 2.3 about the
runtime design.

(4) Software customization.

Another problem of the VA-based solution is how to save the
user’s customization. When Lisa finishes her work, she wants
to terminate the rent agreement, but reserve her customization
of application software, like the default homepage, browser
bookmarks/history, cookies and even toolbars’ positions, etc.; then
it is possible for her to restore these favorites when she rents the
same virtual environment again.

For the VA-based solution, it is difficult to implement this
function efficiently. One way is to use application-specific tools to
draw the customized configurations [10]. Another is to save the
difference between the current VM image and the original one,
which will contain too much unrelated data.

We solve this problem through the runtime environment based
on user-level virtualization, which is independent of the concrete
software and achieves higher storage efficiency.

The details are presented with the runtime design in Section 2.3.

2.2. Preparation of on-demand software

According to the on-demand software model we presented
in[11], any software can be regarded as containing three parts: Part
1 includes all resources provided by the OS; Part 2 contains what
are created/modified/deleted by the installation process; and Part
3 is the data created/modified/deleted during the run time. The
resources here mainly refer to files/folders, environment variables
and/or the related system registry keys/values (for Windows 0S).

Because the traditional solution only depends on the VM, it has
to carry the OS image in order to take Part 1, as well as Part 2, to
construct the whole virtual appliance.

For the new solution, user-level virtualization isolates applica-
tion software from the OS and our solution only makes software
run on compatible hosts (which implies that all resources of Part
1 are available on the local system), so that only Part 2 is needed
to be drawn to build the on-demand software. The difference be-
tween these two solutions is illustrated in Fig. 1.

An installation snapshot is taken to build the on-demand
software: we start with a machine in a known state (for example,
immediately after the OS was installed); then, we install software
and finally identify everything that was added to the system by
that process of the installation. Typical additions mainly consist



Download English Version:

https://daneshyari.com/en/article/10330616

Download Persian Version:

https://daneshyari.com/article/10330616

Daneshyari.com


https://daneshyari.com/en/article/10330616
https://daneshyari.com/article/10330616
https://daneshyari.com/

