
Future Generation Computer Systems 29 (2013) 352–360

Contents lists available at SciVerse ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

High throughput computing over peer-to-peer networks
Carlos Pérez-Miguel ∗, Jose Miguel-Alonso, Alexander Mendiburu
Intelligent Systems Group, Department of Computer Architecture and Technology, The University of the Basque Country, UPV/EHU, Paseo Manuel de Lardizabal, 1, 20018,
San Sebastian-Donostia, Spain

a r t i c l e i n f o

Article history:
Received 1 November 2010
Received in revised form
20 July 2011
Accepted 5 August 2011
Available online 25 August 2011

Keywords:
Peer-to-peer networks
High throughput computing
Distributed hash tables

a b s t r a c t

In this work, we present a proposal to build a high throughput computing system totally based upon
the Peer-to-Peer (P2P) paradigm. We discuss the general characteristics of P2P systems, with focus on
P2P storage, and the expected characteristics of the HTC system: totally decentralized, not requiring
permanent connection, and able to implement scheduling policies such as running jobs in a (non-strict)
FCFS order.Wehave selected Cassandra as the supporting P2P storage system for our purposes.Wediscuss
the basic aspects of the system implementation, and carry out some experiments designed to verify that
it works as expected.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Peer-to-Peer (P2P) systems, initially designed for file sharing
(Napster [1], Gnutella [2]) are gaining popularity in industry and
academia as a powerful mechanism to support other types of
applications. Some proposals (or, in some cases, working realities)
are massive file storage systems [3], name indexing [4] and
voice calls over IP [5]. The computational science & engineering
community is paying attention to P2P systems as the foundation
of a large computational resource [6].

In this work, we focus on one particular paradigm of massive
computation: High Throughput Computing (HTC). An HTC system
can be defined as a platform able to execute a large number of jobs
per unit of time. These jobs are independent, meaning that they
can be submitted by different users, and that jobs submitted to the
system can be executed in any order—although some sort of first-
in-first-out order is usually expected.

Existing HTC systems, like Condor [7] or Boinc [8], have one
important characteristic that make them potentially weak: they
require a central administration point. This central point could
impose limitations in system scalability and also in fault tolerance.
In this work, we propose a design of an HTC system based on
P2P protocols in order to overcome these limitations. In the
pure peer-to-peer philosophy, all the members of the proposed
system should be capable to carry out administrative tasks to
maintain the system operational, in addition to executing jobs.

∗ Corresponding author. Tel.: +34 685 706 943.
E-mail addresses: carlos.perezm@ehu.es (C. Pérez-Miguel), j.miguel@ehu.es

(J. Miguel-Alonso), alexander.mendiburu@ehu.es (A. Mendiburu).

Ideally, this P2P–HTC system should perform like a non-P2P in the
absence of failures, and should scale to large networks. A prototype
implementation of our proposal (which does not incorporate the
full range of planned features) has been used to carry out a
collection of experiments. These allow us to check that the system
is operational and to assess its performance. The code of the system
is available to the research community by direct request to the
corresponding author.

The rest of the paper is organized as follows. Section 2 de-
scribes a few basic concepts about peer-to-peer networks. Sec-
tion 3 presents some ideas about P2P-based intensive computing
systems, and the minimum set of characteristics that should be in-
cluded to provide this kind of service; we also discuss some works
carried out in this field. In Section 4, we focus on distributed, P2P
storage systems, paying special attention to a particular class (dis-
tributed hash tables) and a particular implementation, Cassandra,
that have been chosen as the foundation of our HTC proposal. The
proposal itself is described in Section 5. A prototype implemen-
tation of our HTC system is tested in Section 6. Finally Section 7
summarizes the main conclusions of this paper, and proposes fu-
ture lines of work and research.

2. Peer-to-peer networks

Peer-to-peer systems are distributed systems in which there is
neither a central control point, nor a hierarchical structure among
itsmembers. In a P2P system, all nodes in the systemhave the same
role, and are interconnected using some kind of network (usually,
Internet), defining an application-level virtual network, also called
overlay. Nodes communicate using this overlay, in order to find
information, share resources or communicate human users.

0167-739X/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2011.08.011

http://dx.doi.org/10.1016/j.future.2011.08.011
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:carlos.perezm@ehu.es
mailto:j.miguel@ehu.es
mailto:alexander.mendiburu@ehu.es
http://dx.doi.org/10.1016/j.future.2011.08.011


C. Pérez-Miguel et al. / Future Generation Computer Systems 29 (2013) 352–360 353

Fig. 1. Key space [0-10] mapped over a 4-node DHT.

Unlike grid systems, P2P systems do not interconnect well-
defined groups using highly reliable networks. They are based
on large numbers of unreliable users using unreliable network
connections. Even under these limitations, theymanage to provide
some interesting services and features such as scalability, fault
tolerance, efficient information search, highly redundant storage,
persistence or anonymity.

According to [9,10], we can classify P2P systems into two basic
types of overlays: structured or non-structured. Those of the latter
type are formed by randomly connected nodes. Since there is
no structure, flooding routing protocols are used to communicate
peers. This way any network node can be reached from any other
point in the system, but at the expense of an important efficiency
penalty, that depends on the size of the system.

When we talk about structured overlays, we refer to systems
in which there is a well defined virtual topology, and each piece
of the network content (whatever it means, depending on the
application) is stored in a well-defined network node. If we focus
on data storage, we say that this type of P2P systems implement
DistributedHash Tables (DHT) [11,12], inwhich objects are located
in a node (or nodes) chosen in a deterministic way.

Let us consider an overlay network with N nodes, each one
with a different ID, and a (much) larger key space. A hash function
provides a map of a key onto a node ID—there is a single map,
in such a way that the node that takes care of a key is perfectly
identified. This mapping defines a DHT, and is the basis of highly-
scalable, distributed storage networks. In Fig. 1, we can see a
possible mapping of a key space [0-10] in a 4-node DHT.

In a DHT, information is stored in the form of pairs {key, value}
accessible by a hash-like API, providing us with functions to insert
and modify key–value pairs (put(key, value)) and to access them
(value=get(key)). Implicitly, a routing protocolwill be used in order
to deliver this petitions to the key owner node.

Different routing protocols have been proposed in the literature
but all of them share one characteristic: the routing is done in a
progressivemanner, as a function of the distance to the destination
node. Therefore, when a given node wants to communicate with
the node that takes care of key k, it will send the message through
the neighbor which is closer (in terms of assigned keys) to the
destination. The specific definition of proximity of keys and nodes
depends on the particular structure of the DHT, and varies from
system to system.

In theory, DHT systems guarantee that any object can be
reached in a number of jumps in order O(logN), being N the num-
ber of network nodes. The weakest point in DHT systems is their
behavior in the case of fast changes in system configuration, term
also known as churn. Informally, this refers to nodes that join or
leave the overlay, forcing a network reorganization and a mod-
ification in the mappings. Latency can increase in this case, and
several proposals exist that try to reduce this problem. In [13],
an algorithm is proposed that tries to reach the optimum latency
in potential-law graphs, such as P2P networks, without losing the
scalability of DHTs; also, Godfrey et al. propose in [14] an algorithm
to maintain load balance in adverse conditions.

3. P2P computing

A distributed computing system can be defined as a collection
of computers interconnected by a communication network. These
computers try to join their resources in order to collectively do
computational tasks. Each computer in the system has its own,
independent resources; however, from the user’s point of view, the
systemshould be seen as a single resource pool. An interface is given
to the users in order to access the systemwithout taking care of its
complexity.

The are many systems, both free and commercial, that
accomplish this objective, from Clusters toGrid Computing systems,
and including Desktop Computing systems. Some well-known
products or middleware sets are Globus [15] for grid systems,
Condor [7] for cluster systems (with extensions for grids), or
Boinc [8] for desktop computing. All of these systems, however,
have something in common: they all revolve around central points
of administration. This central resource, in case of failure, canmake
the whole system unusable.

A true peer-to-peer computing system overcomes this disad-
vantage by distributing management capabilities among all the
system nodes. In the literature, we can find several proposals of
P2P computing systems. An extensive survey can be found in [10].
Next we briefly analyze some P2P computing systems paying at-
tention to the following desirable properties:

1. Fully distributed, without centralized administration point or
points.

2. Users should be able to submit jobs from their machines and
then disconnect from the system.

3. Global scheduling policies should be implemented. In particu-
lar, FCFS execution order of jobs is expected, although it needs
not be strict.

Some proposals discussed in the literature fail to meet the first
property: theyuse some centralizedmechanism for job scheduling.
CompuP2P [16] is based on a DHT which divides the nodes set
between resource sellers and buyers. A leader node is chosen,
which takes care of the resource market. In [17] Chmaj et al.
present a system based on a structured overlay in which one of
the nodes has the master role, the tracker. This tracker is needed
in order to schedule computing tasks and distribute those files the
nodes may require.

A commonmodel used for P2P computing systems is the super-
peer model in which a group of nodes, the super-peers, form a P2P
overlay.Workers are connected to super-peers,which are in charge
of scheduling tasks.When a userwants to run any task, hewill have
to ask nodes in the super-peer overlay to search for idle workers.
Examples of this model are JACEP2P-V2 [18], Mining@home [19]
and DIETj [20]. A similar idea is implemented in CoDiP2P [21],
which is based on a tree-structured P2P network. It is built with
the JXTA Java library, used to form non-structured P2P networks.
In the tree structure, nodes are separated into masters and slaves,
and grouped in tree regions. In each region, there is a master



Download	English	Version:

https://daneshyari.com/en/article/10330619

Download	Persian	Version:

https://daneshyari.com/article/10330619

Daneshyari.com

https://daneshyari.com/en/article/10330619
https://daneshyari.com/article/10330619
https://daneshyari.com/

