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Self-verifying automata are a special variant of finite automata with a symmetric kind of

nondeterminism. We study the conversion of self-verifying automata to deterministic au-

tomata from a descriptional complexity point of view. The main result is the exact cost, in

terms of the number of states, of such a simulation.
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1. Introduction

In automata theory and theoretical computer science, several kinds of devices able to recognize formal languages have

been proposed and investigated. Different classes of devices can be compared, first of all, from the point of view of their

recognition powers. We mention just two examples of classical results in this area: the equivalence between deterministic

and nondeterministic finite automata, and the fact that deterministic pushdown automata are strictly less powerful than

nondeterministic ones. With a deeper investigation, classes of devices can be compared from the point of view of their

descriptional complexity [1]. The classical example is the simulation of n-state nondeterministic automata by deterministic

automata that can be done using 2n states [2], and cannot be done, in the worst case, with less than 2n states [3–5].

In this paper, we continue this line of research by considering self-verifying automata, a special kind of finite automata,

introduced in [6], with a symmetric form of nondeterminism called self-verifying nondeterminism [7]. This kind of nonde-

terminism was mainly considered in connection with randomized Las Vegas computations, but as pointed out in [8], it is

interesting also per se.

Roughly speaking, in self-verifying nondeterminism, computation paths can give three types of answers: yes, no, and I

do not know. On each input string, at least one path must give answer “yes” or “no”. Furthermore, on the same string, two

paths cannot give contradictory answers, namely both the answers “yes” and “no” are not possible.

Hence, the existence of a computation path ending in an accepting state (an answer “yes”) definitively proves the mem-

bership of the string in the language. This is exactly the sameas for nondeterministic automata. Furthermore, in self-verifying

automata the existence of a computation path ending in a rejecting state (an answer “no”) definitively proves that the string

does not belong to the language. This is in contrast with nondeterministic automata, where the existence of a rejecting path

leaves open the possibility that the input could be accepted by a different path. Thus, the main feature of self-verifying au-

tomata is that, even if the transitions are nondeterministic, when a computation accepts or rejects, the answer is definitively

correct, that is, the automaton “can trust” the outcome of that computation. The name “self-verifying” derives from this

property.
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Fig. 1. A self-verifying automaton for the language {uav | u, v ∈ {a, b}∗ and |v| = 2}.

Self-verifying automata are as powerful as deterministic automata; in particular, the standard subset construction can

be used to convert them to deterministic automata. Hence the question arises of investigating this equivalence from the

descriptional point of view. This problem was previously considered by Assent and Seibert in [9], who proved that in the

deterministic automaton obtained by applying the standard subset construction to a self-verifying automaton certain states

must be equivalent. As a consequence, they were able to show that each n-state self-verifying automaton can be simulated

by a deterministic automaton with O(2n/
√

n) states.
Here we further deepen this investigation by showing that such an upper bound can be lowered to a function g(n)which

grows like 3n/3. We give the exact value of g(n) in the paper. In particular, we associate with each n-state self-verifying

automaton a certain graph with n vertices, and we prove that there exists a deterministic automaton equivalent to to the

given self-verifying automatonwhose state set is isomorphic to the set of themaximal cliques of such a graph. Using a result

from graph theory stating the number of possible maximal cliques in a graph [10], we get the upper bound g(n). In the

second part of the paper, we prove the optimality of this upper bound. For every positive integer n, we describe a binary

language accepted by an n-state self-verifying automaton such that the minimal equivalent deterministic automaton must

have exactly g(n) states.
We next allow self-verifying automata to have multiple initial states, and prove that the cost of the simulation of n-state

self-verifying automata with multiple initial states by deterministic automata is essentially the same as in the case of self-

verifying automata with only one initial state. This cost does not reduce, even if we restrict to self-verifying automata that

use only deterministic transitions and make the only nondeterministic decision at the beginning of the computation, to

choose the initial state. We conclude the paper by presenting some considerations concerning the case of automata defined

over a one-letter alphabet.

2. Preliminaries

Wefix an alphabet�. Given a language L ⊆ �∗, we denote by Lc the complement of L, namely the set�∗ − L. We assume

that the reader is familiar with the notions of deterministic and nondeterministic finite automata. For short, we denote them

as dfa’s and nfa’s, respectively.

Definition 1. A self-verifying finite automaton (svfa) is a 6-tuple A = (Q , �, δ, q0, F
a, Fr), where Q , �, δ, q0 are defined

as for standard nondeterministic automata, and Fa, Fr ⊆ Q are the sets of accepting and rejecting states, respectively. The

remaining states, namely the states belonging to Q − (Fa ∪ Fr), are called neutral states.

It is required that for each input string w in �∗, there exists at least one computation ending in an accepting or in a

rejecting state, that is, δ(q0,w) ∩ (Fa ∪ Fr) �= ∅, and there are no stringsw such that both δ(q0,w) ∩ Fa and δ(q0,w) ∩ Fr

are nonempty.

The language accepted by A, denoted as La(A), is the set of all input strings having a computation ending in an accepting

state, while the language rejected by A, denoted as Lr(A), is the set of all input strings having a computation ending in a

rejecting state.

It follows directly from the definition that La(A) = (Lr(A))c for each svfa A. Hence, when we say that an svfa A recognizes

a language L, we mean that L = La(A) and Lc = Lr(A).

Example1. Consider theautomatonof Fig. 1.Acceptingand rejecting states aremarkedwithdouble circleswith “yes”or “no”.

Hence, Fa = {q4} and Fr = {q0, q8}. The remaining states are neutral. We now show that the automaton is self-verifying.

First of all, the empty string is rejected.Nowconsider a stringw in {a, b}∗,with1 � |w| � 2. There exists one computation

onw ending in the rejecting state q8. All the other possible computations onw end in some neutral state. Hence, each string

of length 1 or 2 is rejected. Finally, we consider strings of length at least 3, namely strings of the form w = uσ v, where
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