
Information and Computation 201 (2005) 121–159

www.elsevier.com/locate/ic

Source-tracking unification�

Venkatesh Choppella a,∗, Christopher T. Haynes b

aIndian Institute of Information Technology and Management—Kerala, Thiruvananthapuram, Kerala 695 581, India
bComputer Science Department, Indiana University, Bloomington, IN 47405, USA

Received 2 December 2003; Received 3 September 2004
Available online 10 August 2005

Abstract

We propose a path-based framework for deriving and simplifying source-tracking information for first-
order term unification in the empty theory. Such a framework is useful for diagnosing unification-based
systems, including debugging of type errors in programs and the generation of success and failure proofs
in logic programming. The objects of source-tracking are deductions in the logic of term unification. The
semantics of deductions are paths over a unification graph whose labels form the suffix language of a semi-
Dyck set. Based on this idea of unification paths, two algorithms for generating proofs are presented: the first
uses context-free labeled shortest-path algorithms to generate optimal (shortest) proofs in time O(n3) for a
fixed signature, where n is the number of vertices of the unification graph. The second algorithm integrates
easily with standard unification algorithms, entailing an overhead of only a constant factor, but generates
non-optimal proofs. These non-optimal proofs may be further simplified by group rewrite rules.
© 2005 Elsevier Inc. All rights reserved.

Keywords: Algorithms; Debugging; Formal languages; Graph theory; Logic programming; Path problems; Term
unification; Type inference

� This article is part of the 19th International Conference on Automated Deduction (CADE-19). [Information and
Computation, Volume 199, Numbers 1/2, 2005].

∗ Corresponding author.
E-mail address: choppell@iiitmk.ac.in (V. Choppella), chaynes@cs.indiana.edu (C.T. Haynes).

0890-5401/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.ic.2004.10.013



122 V. Choppella, C.T. Haynes / Information and Computation 201 (2005) 121–159

1. Introduction

The term unification problem in the empty theory, also called the syntactic unification prob-
lem, is concerned with solving equations over syntactic terms built from variables and function
symbols. Term unification has diverse applications including automated theorem proving, artifi-
cial intelligence, databases, type reconstruction in programming languages, and logic programming
(Prolog).
A solution for a system of term equations, also called a unifier, is a substitution (a mapping from

variables to terms) such that the substitution, when applied, makes each of the terms on the left-
and the right-hand side of equation equal. For example, consider the term equation

f(x, y) ?= f(a, z), (1)

in which x, y , and z are variables, and f is a function symbol and a is a constant. It can be verified
that the substitution

x �→ a, y �→ b, z �→ b,

where b is a constant, is a unifier of Eq. (1). The solution x �→ a, y �→ z is also a unifier.
It is also possible that a system of equations has no solutions. Consider, for example, the

equation

f(x, y) ?= g(x, y). (2)

No substitution can make the two terms involved in the equation equal. In such a case, we say
that the system of term equations fails to unify, or is non-unifiable.
This paper is motivated by the question of determining why a system of equations fails to unify.

The reason for non-unifiability of Eq. (2) is simple: the head symbols do not match. In general, how-
ever, determining the cause of failure could lead to long chains of reasoning involvingmany original
and derived term equations. The more general problem consists of source-tracking unification, that
is, deriving diagnostic information about unifiability or non-unifiability of a system of equations in
terms of the original representation of the unification problem. Non-unifiability is related to type
errors in programming languages [5,21,29,55] and unsuccessful queries in logic programs [10,17]. The
reporting of this failure can be confusing and inadequate for reconstructing the error.
The origins of the unification problem can be traced to the 1930s work of Herbrand [27]. In the

1960s,Robinson coined the term“unification”and showedhow it lay at theheart of resolution-based
theorem proving [48]. Robinson defined the notion of a most general unifier, a unifier from which
all other unifiers may be derived by applying a suitable substitution, and proposed an algorithm for
computing most general unifiers. The many variants and generalizations of the unification prob-
lem (E-unification, higher-order unification, semi-unification, etc.) and their diverse applications
have made unification an important area of research in theoretical computer science and artificial
intelligence. Surveys of unification with its applications in other areas can be found in [31] and [2].
Traditionally, there have been two main approaches to studying the unification problem and

designing algorithms for computing most general unifiers. The first is the transformational ap-
proach to unification introduced by Martelli and Montanari [37], studied by Lassez et al. [33], and



Download English Version:

https://daneshyari.com/en/article/10330950

Download Persian Version:

https://daneshyari.com/article/10330950

Daneshyari.com

https://daneshyari.com/en/article/10330950
https://daneshyari.com/article/10330950
https://daneshyari.com

