
Information Processing Letters 116 (2016) 71–74

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

A filtration method for order-preserving matching

Tamanna Chhabra, Jorma Tarhio ∗

Department of Computer Science, Aalto University, P.O. Box 15400, FI-00076 Aalto, Finland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 March 2015
Received in revised form 16 September
2015
Accepted 19 October 2015
Available online 2 November 2015
Communicated by Tsan-sheng Hsu

Keywords:
Algorithms
Combinatorial problems
Order-preserving matching
String searching

The problem of order-preserving matching has gained attention lately. The text and the
pattern consist of numbers. The task is to find all the substrings in the text which have
the same length and relative order as the pattern. The problem has applications in analysis
of time series. We present a new sublinear solution based on filtration. Any algorithm
for exact string matching can be used as a filtering method. If the filtration algorithm is
sublinear, the total method is sublinear on average. We show by practical experiments that
the new solution is more efficient than earlier algorithms.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

String matching [1] is a widely known problem in
Computer Science. Given a text T of length n and a pat-
tern P of length m, both being strings over a finite alpha-
bet �, the task of string matching is to find all the occur-
rences of P in T . The problem of order-preserving match-
ing [2–6] has gained attention lately. It considers strings
of numbers. The task is to find all the substrings (also
called factors) u in T which have the same relative order
as P , and |u| = |P |. Suppose P = (10, 22, 15, 30, 20, 18, 27)

and T = (22, 85, 79, 24, 42, 27, 62, 40, 32, 47, 69, 55, 25),
then the relative order of P matches the substring u =
(24, 42, 27, 62, 40, 32, 47) of T , see Fig. 1.

Several online [7,5,3,4] and one offline solution [2]
have been proposed for order-preserving matching. Kubica
et al. [4] and Kim et al. [3] presented solutions based on
the Knuth–Morris–Pratt algorithm (KMP) [8]. Later, Cho
et al. [5,6] gave a sublinear solution based on the bad
character heuristic of the Boyer–Moore algorithm [9]. Al-

* Corresponding author.
E-mail addresses: tamanna.chhabra@aalto.fi (T. Chhabra),

jorma.tarhio@aalto.fi (J. Tarhio).

most at the same time, Belazzougui et al. [7] derived an
optimal sublinear solution. We will present a new practi-
cal solution based on filtration. We form a modified pat-
tern and use an algorithm for exact string matching as a
filtration method. Our approach is simpler and in prac-
tice more efficient than earlier solutions. We transform
the original pattern P into a binary string P ′ express-
ing increases (1), equalities (0), and decreases (0) be-
tween subsequent pattern positions. Then we search for
P ′ in the analogously transformed text T ′ . For example,
P ′ = 101001 corresponds to P = (10, 22, 15, 30, 20, 18, 27)

and T ′ = 100101001100 to T above. Each occurrence is a
match candidate which is verified following the numerical
order of the positions of the original pattern P . Note that
in this approach any algorithm for exact string matching
can be used as a filtration method. If the filtration algo-
rithm is sublinear and the text is transformed on line, the
total method is sublinear on average.

We made experiments with two sublinear string match-
ing algorithms and two linear string matching algorithms
as the filtering method. Our approach with sublinear fil-
ters was considerably faster than the algorithm by Cho
et al. [5], which is the first sublinear solution of the prob-
lem.

http://dx.doi.org/10.1016/j.ipl.2015.10.005
0020-0190/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://dx.doi.org/10.1016/j.ipl.2015.10.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:tamanna.chhabra@aalto.fi
mailto:jorma.tarhio@aalto.fi
http://dx.doi.org/10.1016/j.ipl.2015.10.005
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2015.10.005&domain=pdf

72 T. Chhabra, J. Tarhio / Information Processing Letters 116 (2016) 71–74

Fig. 1. Example of order-preserving matching.

The paper is organized as follows. Section 2 describes
the previous solutions for order-preserving matching, Sec-
tion 3 presents our solution based on filtration, Section 4
analyses the new approach, Section 5 presents and dis-
cusses the results of practical experiments, and Section 6
concludes the article.

2. Previous solutions

In the first KMP approach presented by Kubica et al. [4],
the fail function in the KMP algorithm is modified to com-
pute the order-borders table. This can be achieved in linear
time. The KMP algorithm is mutated such that it deter-
mines if the text contains substring with the same relative
order as that of the pattern using the order-borders table.
This computation can be done in linear time. Hence, the
total time complexity of the method is linear.

The second KMP approach by Kim et al. [3] is based
on the prefix representation. The prefix representation is
based on finding the rank of each number in the pre-
fix. The time complexity of the method is O (n log m). This
approach is further optimized using the nearest neighbor
representation to overcome the overhead involved in com-
puting the rank function. The time complexity of the im-
proved version is O (n + m logm).

The BMH approach by Cho et al. [5] is based on the bad
character rule applied to q-grams, i.e. strings of q charac-
ters. A q-gram is treated as a single character in order to
make shifts longer. In this way, a large amount of text can
be skipped for long patterns, and the algorithm is sublin-
ear on average. The standard version works in O (mn) in
the worst case. Later, Cho et al. [6] introduced a linear
version, which has been combined with KMP in order to
guarantee linear behavior in the worst case.

3. Our solution

In Section 1 we gave an informal description of order-
preserving matching. Let us define the problem formally.

Problem definition Two strings u = u1u2 · · · um and v =
v1 v2 · · · vm of the same length over � are called order-
isomorphic [3,4], written u ≈ v , if

ui ≤ u j ⇔ vi ≤ v j for 1 ≤ i, j ≤ m.

In the order-preserving pattern matching problem, the task is
to find all the substrings of T = t1t2 · · · tn which are order-
isomorphic with P = p1 p2 · · · pm .

Our solution for order-preserving matching consists of
two phases: filtration and verification. First the text is
transformed to a bit string which is filtered with some
exact string matching algorithm. In the second phase the
match candidates are verified using a checking routine.

Filtration For filtration, the consecutive numbers in the
pattern P = p1 p2 · · · pm are compared pairwise in the pre-
processing phase and the result is encoded as a modified
pattern P ′ = b1b2 · · ·bm−1 of binary numbers: bi is 1 if
pi < pi+1 holds, otherwise bi is 0. In the search phase,
some algorithm for exact string matching (let us call it A)
is applied to filter out the text. When Algorithm A reads an
alignment window of the original text, the text is encoded
incrementally online in the same way as the pattern. Al-
gorithm A is run as if the whole text would have been
encoded. Because Algorithm A may recognize an occur-
rence of P ′ which does not correspond to an actual match
of P in T , each occurrence of P ′ is only a match candi-
date which should be verified. It is clear that this filtration
method cannot skip any occurrence of P in T .

Verification During preprocessing the pattern, the num-
bers of the pattern P = p1 p2 · · · pm are sorted. The result
is an auxiliary table r: pr[i] ≤ pr[j] holds for each pair i < j
and pr[1] is the smallest number in P . In addition, we
need a binary vector E representing the equalities: E[i] = 1
denotes that pr[i] = pr[i+1] holds. The match candidates
found by Algorithm A are traversed in accordance with the
table r. If the candidate starts from t j in T , the first com-
parison is done between t j−1+r[1] and t j−1+r[2] . There is a
mismatch when

t j−1+r[i] > t j−1+r[i+1] or

(t j−1+r[i] = t j−1+r[i+1] and E[i] = 0) or

(t j−1+r[i] < t j−1+r[i+1] and E[i] = 1)

is satisfied. The candidate is discarded when a mismatch
is encountered. Verification is efficient because sorting is
done only once during preprocessing.

Remark We use binary numbers in encoding. We also
tried encoding of three numbers 0, 1, and 2 correspond-
ing to ‘<’, ‘=’, and ‘>’, but the binary approach was faster
in practice, because testing of one condition is faster than
testing of two conditions. Also the frequency of nearby
equalities is low in real data.

4. Analysis

We will prove that our approach is sublinear in the
average case, if the filtration algorithm is sublinear. Sub-
linearity means that on average all the characters in the
text are not examined.

Let us assume that the numbers in P and T are inte-
gers and they are statistically independent of each other
and the distribution of numbers is discrete uniform. Let

Download English Version:

https://daneshyari.com/en/article/10331019

Download Persian Version:

https://daneshyari.com/article/10331019

Daneshyari.com

https://daneshyari.com/en/article/10331019
https://daneshyari.com/article/10331019
https://daneshyari.com

