
Information Processing Letters 116 (2016) 75–79

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

On the semantics of Strategy Logic ✩

Patricia Bouyer, Patrick Gardy, Nicolas Markey ∗

LSV, CNRS, ENS Cachan, Univ. Paris-Saclay, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 November 2014
Received in revised form 14 October 2015
Accepted 14 October 2015
Available online 27 October 2015
Communicated by A. Muscholl

Keywords:
Formal methods
Multi-agent systems
Strategic reasoning
Temporal logics

We define and study a slight variation on the semantics of Strategy Logic: while in the
classical semantics, all strategies are shifted during the evaluation of temporal modalities,
we propose to only shift the strategies that have been assigned to a player, thus matching
the intuition that we can assign the very same strategy to the players at different points in
time. We prove that surprisingly, this renders the model-checking problem undecidable.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Model checking [5,3] is a model-based technique for au-
tomatically verifying properties of computerized systems.
Model-checking algorithms exhaustively explore the set
of behaviours of the (model of the) system under study,
and compare this set against properties being checked.
Temporal logics, and in particular the Linear-time Temporal
Logic (LTL) [14] and the Computation-Tree Logic (CTL) [15,
4], provide a convenient formalism for expressing such
properties: they extend boolean logics in order to state
properties of sequences of boolean valuations. Using tem-
poral modalities, they can constrain the order in which
various events occur along such sequences. It is then possi-
ble to express, for instance, that any problem is eventually
followed by an alarm.

✩ This work was partly supported by ERC project EQualIS (FP7-308087)
and FET project Cassting (FP7-601148).

* Corresponding author.
E-mail addresses: patricia.bouyer@lsv.fr (P. Bouyer), patrick.gardy@lsv.fr

(P. Gardy), nicolas.markey@lsv.fr (N. Markey).

During the last 15 years, temporal logics—and model
checking—have been extended to deal with multi-agent sys-
tems: there, the behaviour of the global system depends
on the actions of individual agents, and the new logic,
Alternating-time Temporal Logic (ATL) [1,2], can now ex-
press what some agent can (or cannot) achieve, or what
happens in the whole system when some agent tries to
achieve their goal. This extension is particularly relevant
in the setting of controller synthesis, as it provides a way
of expressing the existence of a controller (often seen as
a strategy in a game against the other agents) enforcing a
given property.

However, it has been noticed recently that ATL is not
expressive enough to express many interesting properties
of multi-agent systems. In particular, ATL is mainly us-
able for expressing properties of antagonistic agents, and
cannot express real interactions or collaborations between
agents. It has thus been enriched in order to allow for
such collaborations: Strategy Logic (SL) [6,7,13,12], in par-
ticular, deals with strategies as first-class citizens, with
(first-order) quantification, and assignment to one or sev-
eral agents.

Consider for instance a network of several clients, that
may ask a central server for accessing a shared resource.

http://dx.doi.org/10.1016/j.ipl.2015.10.004
0020-0190/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2015.10.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:patricia.bouyer@lsv.fr
mailto:patrick.gardy@lsv.fr
mailto:nicolas.markey@lsv.fr
http://dx.doi.org/10.1016/j.ipl.2015.10.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2015.10.004&domain=pdf

76 P. Bouyer et al. / Information Processing Letters 116 (2016) 75–79

One (or several) user can turn the clients on and off, and
when turned on, each client then requests access to the
resource. The server then has two objectives: one is to en-
force that no two clients access the resource at the same
time, whatever the clients do; the second property is that
the clients must have a strategy that each of them can
apply when turned on, and that ensures access to the re-
source (by collaborating with the server). This, in SL (with
adapted syntax to make the formula readable), would be
written

∃σserver. if server applies σserver then[
(always mutual exclusion)∧
(∃σclient. always (if client applies σclient then

eventually access))
]
.

SL model checking is decidable [6,12]. In this paper, we
prove that this result heavily relies on a semantical choice
that is silently made in the previous papers about SL.
We argue in this paper that this semantical choice does
not achieve the expected meaning for the sample formula
above (intuitively, because it gives to the subformula “client
applies σclient” a meaning that depends on the history of
the system, whereas when a client is turned on, it should
start applying its strategy with no prior knowledge about
what has happened previously). We propose an alternative
semantics, which assumes that strategies starts being ap-
plied with empty history, and prove that this minor change
makes the model-checking problem undecidable.

2. Definitions

2.1. Turn-based games

Logics for multi-agent systems are usually interpreted
over structures involving multiple agents (hence the
name...). In the context of this note, we only focus on two-
player turn-based games, since this is enough for proving
our result.

Definition 1. A two-player turn-based game is a tuple
G = 〈S©, S�, T 〉 where S© and S� are pairwise-disjoint
finite sets of states, T ⊆ S2 (where S = S© ∪ S�) is the set
of transitions. It is assumed that for all s ∈ S , there exists
s′ ∈ S s.t. (s, s′) ∈ T .

A path in such a game is a (finite or infinite) sequence
(si)1≤i<L+1 (with L ∈N ∪{+∞}) of states such that, for ev-
ery 1 ≤ i < L, it holds (si, si+1) ∈ T . The length of a path
(si)1≤i<L+1 is the number L of elements of the sequence.
A strategy for Player © is a mapping σ© : S∗ × S© →
S such that for all finite path (si)1≤i≤n with sn ∈ S© ,
it holds (sn, σ©((si)1≤i≤n)) ∈ T . In other terms, a strategy
for Player © tells which transition to follow after any finite
play ending in a state controlled by that player. Strategies
for Player � are defined symmetrically. We write Strat©
and Strat� for the sets of strategies of Players © and �,
and Strat for the set of all strategies.

Given a strategy σ© for Player ©, a strategy σ�
for Player �, and a state s, the outcome of σ© and
σ� from s is the infinite path (si)i≥1 s.t. s1 = s, and
sn+1 = σ©((si)1≤i≤n) if sn ∈ S© , and sn+1 = σ�((si)1≤i≤n)

if sn ∈ S� .

2.2. Strategy Logic (SL)

2.2.1. Syntax and semantics of SL
We now present logics for expressing properties of the

games defined above. For this, we first fix a finite set AP
of atomic propositions, and consider labelled games, with a
mapping � : S → 2AP .

Strategy Logic (SL for short) was introduced in [6], and
further extended and studied in [13,12], as a rich logi-
cal formalism for expressing properties of games. Formulas
in SL are built along the following grammar1:

SL � ϕ ::= p | ¬ϕ | ϕ ∧ϕ | Xϕ | ϕUϕ | ∃x. ϕ

| assign(a �→ x). ϕ

where p ranges over AP, x ranges over a set Var of vari-
ables, and a ranges over a finite set Agt of agents (in our
setting, Agt = {©, �}). Thus, SL can be seen as an exten-
sion of LTL [14] with strategy quantification (∃x. ϕ , which
selects a strategy and stores it in variable x, before evaluat-
ing ϕ) and strategy assignments (assign(a �→ x). ϕ , which
assigns the strategy stored in variable x to Player a, and
then evaluates ϕ).

Formally, formulas of SL are evaluated at a state s of a
game G , under a valuation χ mapping (part of the) agents
and variables to strategies. We write dom(χ) for the subset
of Agt∪Var on which χ is defined. The semantics of atomic
propositions and boolean combinators is the natural one.

In order to define the semantics of strategy quantifiers
and assignments, we need several intermediary notions.
The set of free agents and variables of a formula ϕ , which we
write free(ϕ), contains the agents and variables that have
to be associated with a strategy before ϕ can be evaluated.
It is defined inductively as follows:

free(p) = ∅ for all p ∈ AP

free(¬ϕ) = free(ϕ)

free(ϕ ∨ψ) = free(ϕ) ∪ free(ψ)

free(Xϕ) = Agt ∪ free(ϕ)

free(ϕUψ) = Agt ∪ free(ϕ) ∪ free(ψ)

free(∃x. ϕ)

= free(ϕ) \ {x}
{

free(ϕ) if a /∈ free(ϕ)

(free(ϕ) ∪ {x}) \ {a} otherwise

Let s be a state of G , χ be a valuation, x ∈ Var, and
ϕ ∈ SL s.t. free(ϕ) \ {x} ⊆ dom(χ). Then

1 We mainly follow the syntax of SL from [12], but write ∃x. ϕ instead
of 〈 〈x〉 〉ϕ (to avoid confusions with the ATL strategy quantified 〈 〈−〉 〉), and
assign(a �→ x). ϕ instead of (a, x)ϕ (thus avoiding overloading parenthe-
ses).

Download	English	Version:

https://daneshyari.com/en/article/10331021

Download	Persian	Version:

https://daneshyari.com/article/10331021

Daneshyari.com

https://daneshyari.com/en/article/10331021
https://daneshyari.com/article/10331021
https://daneshyari.com/

