
Information Processing Letters 116 (2016) 100–106

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

On the efficiency of localized work stealing

Warut Suksompong a,∗, Charles E. Leiserson b, Tao B. Schardl b

a Department of Computer Science, Stanford University, 353 Serra Mall, Stanford, CA 94305, USA
b MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St, Cambridge, MA 02139, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 May 2015
Received in revised form 1 October 2015
Accepted 2 October 2015
Available online 8 October 2015
Communicated by M. Yamashita

Keywords:
Parallel algorithms
Multithreaded computation
Work stealing
Localization

This paper investigates a variant of the work-stealing algorithm that we call the localized 
work-stealing algorithm. The intuition behind this variant is that because of locality, 
processors can benefit from working on their own work. Consequently, when a processor 
is free, it makes a steal attempt to get back its own work. We call this type of steal a 
steal-back. We show that the expected running time of the algorithm is T1/P + O (T∞ P ), 
and that under the “even distribution of free agents assumption”, the expected running 
time of the algorithm is T1/P + O (T∞ lg P ). In addition, we obtain another running-time 
bound based on ratios between the sizes of serial tasks in the computation. If M denotes 
the maximum ratio between the largest and the smallest serial tasks of a processor after 
removing a total of O (P ) serial tasks across all processors from consideration, then the 
expected running time of the algorithm is T1/P + O (T∞M).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Work stealing is an efficient and popular paradigm for 
scheduling multithreaded computations. While its practi-
cal benefits have been known for decades [4,8] and sev-
eral researchers have found applications of the paradigm 
[2,5,9,10], Blumofe and Leiserson [3] were the first to give 
a theoretical analysis of work stealing. Their scheduler ex-
ecutes a fully strict (i.e., well-structured) multithreaded 
computations on P processors within an expected time of 
T1/P + O (T∞), where T1 is the minimum serial execution 
time of the multithreaded computation (the work of the 
computation) and T∞ is the minimum execution time with 
an infinite number of processors (the span of the compu-
tation.)

In multithreaded computations, it sometimes occurs 
that a processor performs some computations and stores 
the results in its cache. Therefore, a work-stealing algo-

* Corresponding author.
E-mail addresses: warut@cs.stanford.edu (W. Suksompong), 

cel@mit.edu (C.E. Leiserson), neboat@mit.edu (T.B. Schardl).

rithm could potentially benefit from exploiting locality, i.e., 
having processors work on their own work as much as 
possible. Indeed, an experiment by Acar et al. [1] demon-
strates that exploiting locality can improve the perfor-
mance of the work-stealing algorithm by up to 80%. Sim-
ilarly, Guo et al. [6] found that locality-aware scheduling 
can achieve up to 2.6× speedup over locality-oblivious 
scheduling. In addition, work-stealing strategies that ex-
ploit locality have been proposed. Hierarchical work steal-
ing, considered by Min et al. [11] and Quintin and Wag-
ner [12], contains mechanisms that find the nearest victim 
thread to preserve locality and determine the amount of 
work to steal based on the locality of the victim thread. 
More recently, Paudel et al. [13] explored a selection of 
tasks based on the application-level task locality rather 
than hardware memory topology.

In this paper, we investigate a variant of the work-
stealing algorithm that we call the localized work-stealing 
algorithm. In the localized work-stealing algorithm, when 
a processor is free, it makes a steal attempt to get back 
its own work. We call this type of steal a steal-back. We 
show that the expected running time of the algorithm is 
T1/P + O (T∞ P ), and that under the “even distribution 

http://dx.doi.org/10.1016/j.ipl.2015.10.002
0020-0190/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2015.10.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:warut@cs.stanford.edu
mailto:cel@mit.edu
mailto:neboat@mit.edu
http://dx.doi.org/10.1016/j.ipl.2015.10.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2015.10.002&domain=pdf


W. Suksompong et al. / Information Processing Letters 116 (2016) 100–106 101

of free agents assumption”, the expected running time of 
the algorithm is T1/P + O (T∞ lg P ). In addition, we obtain 
another running-time bound based on ratios between the 
sizes of serial tasks in the computation. If M denotes the 
maximum ratio between the largest and the smallest serial 
tasks of a processor after removing a total of O (P ) serial 
tasks across all processors from consideration, then the ex-
pected running time of the algorithm is T1/P + O (T∞M).

This paper is organized as follows. Section 2 introduces 
the setting that we consider throughout the paper. Sec-
tion 3 analyzes the localized work-stealing algorithm us-
ing the delay-sequence argument. Section 4 analyzes the 
algorithm using amortization arguments. Section 5 con-
siders variants of the localized work-stealing algorithm. 
Finally, Section 6 concludes and suggests directions for fu-
ture work.

2. Localized work-stealing algorithm

Consider a setting with P processors. Each processor 
owns some pieces of work, which we call serial tasks. Each 
serial task takes a positive integer amount of time to com-
plete, which we define as the size of the serial task. We 
assume that different serial tasks can be done in parallel 
and model the work of each processor as a binary tree 
whose leaves are the serial tasks of that processor. The 
trees are balanced in terms of the number of serial tasks 
on each branch, but the order in which the tasks occur in 
the binary tree is assumed to be given to us. We then con-
nect the P roots as a binary tree of height lg P , so that 
we obtain a larger binary tree whose leaves are the serial 
tasks of all processors.

As usual, we define T1 as the work of the computation, 
and T∞ as the span of the computation. The span T∞ cor-
responds to the height of the aforementioned larger binary 
tree plus the size of the largest serial task. In addition, we 
define T ′∞ as the height of the tree not including the part 
connecting the P processors of height lg P at the top or 
the serial tasks at the bottom. Since T ′∞ corresponds to a 
smaller part of the tree than T∞ , we have T ′∞ < T∞ .

The randomized work-stealing algorithm [3] suggests 
that whenever a processor is free, it should “steal” ran-
domly from a processor that still has work left to do. In 
our model, stealing means taking away one of the two 
main branches of the tree corresponding to a particular 
processor, in particular, the branch that the processor is 
not working on. The randomized work-stealing algorithm 
performs O (P (T∞ + lg(1/ε))) steal attempts with prob-
ability at least 1 − ε , and the execution time is T1/P +
O (T∞ + lg P + lg(1/ε)) with probability at least 1 − ε .

This paper investigates a localized variant of the work-
stealing algorithm. In this variant, whenever a processor 
is free, it first checks whether some other processors are 
working on its work. If so, it “steals back” randomly only 
from these processors. Otherwise, it steals randomly as 
usual. We call the two types of steal a general steal and 
a steal-back. The intuition behind this variant is that some-
times a processor performs some computations and stores 
the results in its cache. Therefore, a work-stealing algo-
rithm could potentially benefit from exploiting locality, i.e., 

having processors work on their own work as much as 
possible.

We make a simplifying assumption that each processor 
maintains a list of the other processors that are working 
on its work. When a general steal occurs, the stealer adds 
its name to the list of the owner of the serial task that it 
has just stolen (not necessarily the same as the processor 
from which it has just stolen.) For example, if processor P1
steals a serial task owned by processor P2 from proces-
sor P3, then P1 adds its name to the P2’s list (and not 
P3’s list.) When a steal-back is unsuccessful, the owner re-
moves the name of the target processor from its list, since 
the target processor has finished the owner’s work.

An example of an execution of localized work-stealing 
algorithm can be found in [14]. We assume that the over-
head for maintaining the list and dealing with contention 
for steal-backs is constant. This assumption is reasonable 
because adding (and later removing) the name of a pro-
cessor to a list is done when a general steal occurs, and 
hence can be amortized with general steals. Randomizing 
a processor from the list to steal back from takes constant 
time. When multiple processors attempt to steal back from 
the same processor simultaneously, we allow an arbitrary 
processor to succeed and the remaining processors to fail, 
and hence do not require extra processing time.

3. Delay-sequence argument

In this section, we apply the delay-sequence argument 
to establish an upper bound on the running time of the 
localized work-stealing algorithm. The delay-sequence ar-
gument is used in [3] to show that the randomized work-
stealing algorithm performs O (P (T∞ + lg(1/ε))) steal at-
tempts with probability at least 1 −ε . We show that under 
the “even distribution of free agents assumption”, the ex-
pected running time of the algorithm is T1/P + O (T∞ lg P ). 
We also show a weaker bound that without the assump-
tion, the expected running time of the algorithm is T1/P +
O (T∞ P ).

Since the amount of work done in a computation is al-
ways given by T1, independent of the sequence of steals, 
we focus on estimating the number of steals. We start with 
the following definition.

Definition 1. The even distribution of free agents assumption
is the assumption that when there are k owners left (and 
thus P − k free agents), the P − k free agents are evenly 
distributed working on the work of the k owners. That is, 
each owner has P/k processors working on its work.

While this assumption might not hold in the localized 
work-stealing algorithm as presented here, it is intuitively 
more likely to hold under the hashing modification pre-
sented in Section 5. When the assumption does not hold, 
we obtain a weaker bound as given in Theorem 4.

Before we begin the proof of our theorem, we briefly 
summarize the delay-sequence argument as used by Blu-
mofe and Leiserson [3]. The intuition behind the delay-
sequence argument is that in a random process in which 
multiple paths of the process occur simultaneously, such 
as work stealing, there exists some path that finishes last. 



Download English Version:

https://daneshyari.com/en/article/10331029

Download Persian Version:

https://daneshyari.com/article/10331029

Daneshyari.com

https://daneshyari.com/en/article/10331029
https://daneshyari.com/article/10331029
https://daneshyari.com

