Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Paired 2-disjoint path covers of multidimensional torus networks with faulty edges $\stackrel{\text{\tiny{faulty}}}{=}$

Xie-Bin Chen

College of Mathematics and Statistics, Minnan Normal University, Zhangzhou, Fujian 363000, China

ARTICLE INFO

Article history Received 6 June 2015 Received in revised form 2 September 2015 Accepted 1 October 2015 Available online 23 October 2015 Communicated by M. Yamashita

Keywords: Paired disjoint path cover Fault-tolerance Multidimensional torus Cartesian product of graphs Interconnection network

ABSTRACT

A paired k-disjoint path cover (paired k-DPC for short) of a graph is a set of k disjoint paths joining k distinct source-sink pairs that cover all vertices of the graph. Clearly, the paired k-DPC is stronger than Hamiltonian-connectivity. The *n*-dimensional torus $T(k_1, k_2, \ldots, k_n)$ (including the k-ary n-cube Q_n^k) is one of the most popular interconnection networks. In this paper, we obtain the following results. (1) Assume even $k_i \ge 4$ for i = 1, 2, ..., n. Let $T = T(k_1, k_2, \dots, k_n)$ be a bipartite torus and F be a set of faulty edges with $|F| \le 2n - 3$. Given any four vertices s_1, t_1, s_2 and t_2 , such that each partite set contains two vertices. Then the graph T - F has a paired 2-DPC consisting of $s_1 - t_1$ path and $s_2 - t_2$ path. And the upper bound 2n - 3 of edge faults tolerated is optimal. The result is a generalization of the result of Park et al. concerning the case of n = 2 [17]. (2) Assume $k_i \ge 3$ for i = 1, 2, ..., n, with at most one k_i being even. Let $T = T(k_1, k_2, ..., k_n)$ be a torus and F be a set of faulty edges with $|F| \le 2n - 4$. Then the graph T - F has a paired 2-DPC. And the upper bound 2n-4 of edge faults tolerated is nearly optimal. The result is a generalization of the result of Park concerning the case of n = 2 [16]. Our brief proofs are based on a technique that is of interest and may find some applications.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Hamiltonian property is one of the major requirements in designing network topologies since a topology structure containing Hamiltonian paths or cycles can efficiently simulate algorithms designed on linear arrays or rings. Element (vertex and/or edge) failure is inevitable when a large parallel computer system is put in use. In this regard, the fault-tolerant capacity of a network is a critical issue in parallel computing. There is a large of literature on (fault-tolerant) path and/or cycle embedding of various interconnection networks.

Given any two disjoint sets of k labeled vertices S = $\{s_1, s_2, ..., s_k\}$ and $T = \{t_1, t_2, ..., t_k\}$ in a graph *G*, called sources and sinks, respectively. If there exist k disjoint

http://dx.doi.org/10.1016/j.ipl.2015.10.001 0020-0190/© 2015 Elsevier B.V. All rights reserved. paths P_1, P_2, \ldots, P_k in G, where P_i joins s_i and t_i for i = 1, 2, ..., k, and they cover all vertices of *G*, then *G* is said to have a paired many-to-many k-disjoint path cover (paired k-DPC for short). It is easy to show that a paired k-DPC implies a paired s-DPC for s = 1, 2, ..., k. Therefore, the paired many-to-many k-disjoint path cover is stronger than Hamiltonian-connectivity. For $k \ge 2$, the problem of the paired k-DPC has been investigated for hypercubes [4,5,7,8,10] and other classes of interconnection networks [11,13,16-18]. Relative problem of an unpaired k-DPC of interconnection networks has also been investigated [2,3,22].

The *n*-dimensional torus $T(k_1, k_2, ..., k_2)$ (including the k-ary n-cube) is one of the most popular interconnection networks, it has many excellent topological properties. The (fault-tolerant) path and/or cycle embedding of tori [6,12,21] and k-ary n-cubes [9,14,15,19,20] has been extensively studied.

 $^{^{\}rm tr}$ The work was supported by NNSF of China (No. 11401290). E-mail address: chenxbfz@163.com.

In this paper, we investigate the problem of paired 2-DPC of the multidimensional torus network with faulty edges and obtain the following results.

Theorem 1. Assume even $k_i \ge 4$ for i = 1, 2, ..., n. Let $T = T(k_1, k_2, ..., k_n)$ be a bipartite *n*-dimensional torus and *F* be a set of faulty edges with $|F| \le 2n - 3$. Given any four vertices s_1, t_1, s_2 and t_2 , such that each partite set contains two vertices, then the graph T - F has a paired 2-DPC consisting of $s_1 - t_1$ path and $s_2 - t_2$ path. And the upper bound 2n - 3 of edge faults tolerated is optimal.

Theorem 2. Assume $k_i \ge 3$ for i = 1, 2, ..., n, with at most one k_i being even. Let $T = T(k_1, k_2, ..., k_n)$ be a non-bipartite *n*-dimensional torus and *F* be a set of faulty edges with $|F| \le 2n - 4$. Given any four vertices s_1, t_1, s_2 and t_2 , then the graph T - F has a paired 2-DPC consisting of $s_1 - t_1$ path and $s_2 - t_2$ path. The upper bound 2n - 4 of edge faults tolerated is nearly optimal.

Our results generalize the results of Park et al. concerning the case of n = 2 (see Lemmas 2 and 3). In Section 5, we consider the problem of paired 2-DPC of general nonbipartite multidimensional tori with faulty edges and obtain a result (Theorem 4) similar to Theorem 2. Our brief proofs of the theorems are based on a technique (Theorem 3 in Section 3) that is of interest and may find some applications.

2. Preliminaries

The terminology and notation used in this paper follow [1]. As usual, the vertex set and edge set of a graph *G* are denoted by V(G) and E(G), respectively. We use P = $(v_1, v_2, ..., v_k)$ to denote a path with *k* vertices, where two vertices v_1 and v_k are called its end-vertices, and *P* is also called a $v_1 - v_k$ path. We use *C* to denote a cycle with at least three vertices. A cycle (respectively, path) containing all vertices of a graph *G* is called a Hamiltonian cycle (respectively, Hamiltonian path) of *G*. A graph is bipartite if its vertex set has a bipartition. A necessary and sufficient condition for a graph to be bipartite is that it contains no cycle with odd vertices. Let $E' \subset E(G)$, the notation G - E' denotes the subgraph obtained from *G* by removing all edges in *E'*.

Let $k_i \ge 3$ for i = 1, 2, ..., n. An *n*-dimensional torus $T(k_1, k_2, ..., k_n)$ is a graph with $\prod_{i=1}^n k_i$ vertices, its any vertex *v* can be denoted by an *n*-tuple $v = (x_1, x_2, ..., x_n)$, where $0 \le x_i \le k_i - 1$ for i = 1, 2, ..., n, and the vertex *v* is adjacent to exactly 2*n* vertices $(x_1, ..., x_{i-1}, x_i \pm 1, x_{i+1}, ..., x_n)$, where $x_i + 1$ and $x_i - 1$ are taken modulo k_i for i = 1, 2, ..., n. For any *i*, an edge between two vertices $(x_1, ..., x_{i-1}, x_i + 1, x_{i+1}, ..., x_n)$ (or $(x_1, ..., x_{i-1}, x_i - 1, x_{i+1}, ..., x_n)$) is called an edge of dimension *i*, and the set of all *i*-dimensional edges is denoted by E_i for i = 1, 2, ..., n.

It is easy to see that $E(T) = \bigcup_{i=1}^{n} E_i$ and the torus $T = T(k_1, k_2, ..., k_n)$ is vertex-symmetric. If $k_1 = k_2 = ... = k_n = k$, then *T* is called a *k*-ary *n*-cube, and denoted by Q_n^k . Clearly, Q_n^k is also edge-symmetric.

Let *G* and *H* be two graphs with $V(G) = \{u_1, u_2, ..., u_m\}$ and $V(H) = \{v_1, v_2, ..., v_n\}$. The Cartesian product of two graphs *G* and *H*, denoted by $G \times H$, is the graph with $V(G \times H) = \{u_i v_j | 1 \le i \le m, 1 \le j \le n\}$, and a vertex uv is adjacent to a vertex u'v' if and only if u = u' and $(v, v') \in E(H)$, or v = v' and $(u, u') \in E(G)$.

One can recursively define the Cartesian product of n graphs. The Cartesian product of graphs satisfies the commutative law and the associative law.

It is easy to show that the *n*-dimensional torus $T(k_1, k_2, ..., k_n)$ is isomorphic to $C_{k_1} \times C_{k_2} \times ... \times C_{k_n}$, where C_{k_i} is a cycle with $k_i \geq 3$ vertices for i = 1, 2, ..., n. Thus,

$$T(k_1, k_2, \dots, k_n) = T(k_1, k_2, \dots, k_{n-1}) \times C_{k_n}$$

= $T(k_1, k_2, \dots, k_{n-2}) \times T(k_{n-1}, k_n),$

this simple fact will be used in the proof of the theorems. We give three lemmas as follows.

Lemma 1. (See [12].) Let $T = T(k_1, k_2, ..., k_n)$ be an n-dimensional torus and F be a set of faulty edges with $|F| \le 2n - 2$. Then the graph T - F contains a Hamiltonian cycle.

Lemma 2. (See [17].) Assume even $k_i \ge 4$ for i = 1, 2. Let $T = T(k_1, k_2)$ be a bipartite torus, f be a faulty edge, and s_1, t_1, s_2 and t_2 be any four vertices, such that each partite set contains two vertices. Then the graph T - f has a paired 2-DPC consisting of $s_1 - t_1$ path and $s_2 - t_2$ path.

Lemma 3. (See [16].) Assume $k_1 \ge 3$ and odd $k_2 \ge 3$. Let $T(k_1, k_2)$ be a non-bipartite torus, and s_1, t_1, s_2 and t_2 be any four vertices. Then the torus $T(k_1, k_2)$ has a paired 2-DPC consisting of $s_1 - t_1$ path and $s_2 - t_2$ path.

3. Theorem 3 and its proof

We give the following Theorem 3 that is a main technique of our brief proofs of Theorems 1, 2 and 4, and it is of interest and may find some applications.

Theorem 3. Assume *G* and *H* are two graphs with $V(G) = \{u_1, u_2, ..., u_m\}$ and $V(H) = \{v_1, v_2, ..., v_n\}$, and $G \times H$ is the Cartesian product of *G* and *H*. Let $G^{(j)} = G \times v_j$ be a copy of *G* in $G \times H$ for j = 1, 2, ..., n, and $H^{(i)} = u_i \times H$ be a copy of *H* in $G \times H$ for i = 1, 2, ..., m. Assume F_0 and F_1 are two disjoint sets of faulty edges in the Cartesian product $G \times H$, such that $F_0 \subset \bigcup_{i=1}^n E(G^{(j)})$ and $F_1 \subset \bigcup_{i=1}^m E(H^{(i)})$.

(1) If $f \in F_0$, we use f' to denote the corresponding edge of f in the graph $G^{(1)}$, and if $f \in F_1$, we use f' to denote the corresponding edge of f in the graph $H^{(1)}$. Let $F'_0 = \{f' | f \in F_0\} \subset E(G^{(1)})$ and $F'_1 = \{f' | f \in F_1\} \subset E(H^{(1)})$. Assume the graph $G^{(1)} - F'_0$ contains a subgraph G_0 and the graph $H^{(1)} - F'_1$ contains a subgraph H_0 . Then the graph $G \times H - (F_0 \cup F_1)$ contains a subgraph $G_0 \times H_0$.

(2) Assume the graph *G* contains a subgraph G_0 by removing at most r_0 arbitrary edges, and the graph *H* contains a subgraph H_0 by removing at most r_1 arbitrary edges. If $|F_0| \le r_0$ and $|F_1| \le r_1$, then the graph $G \times H - (F_0 \cup F_1)$ contains a subgraph $G_0 \times H_0$.

Download English Version:

https://daneshyari.com/en/article/10331031

Download Persian Version:

https://daneshyari.com/article/10331031

Daneshyari.com