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A paired k-disjoint path cover (paired k-DPC for short) of a graph is a set of k disjoint paths 
joining k distinct source-sink pairs that cover all vertices of the graph. Clearly, the paired 
k-DPC is stronger than Hamiltonian-connectivity. The n-dimensional torus T (k1, k2, . . . , kn)

(including the k-ary n-cube Q k
n ) is one of the most popular interconnection networks. In 

this paper, we obtain the following results. (1) Assume even ki ≥ 4 for i = 1, 2, . . . , n. Let 
T = T (k1, k2, . . . , kn) be a bipartite torus and F be a set of faulty edges with |F | ≤ 2n − 3. 
Given any four vertices s1, t1, s2 and t2, such that each partite set contains two vertices. 
Then the graph T − F has a paired 2-DPC consisting of s1 −t1 path and s2 −t2 path. And the 
upper bound 2n − 3 of edge faults tolerated is optimal. The result is a generalization of the 
result of Park et al. concerning the case of n = 2 [17]. (2) Assume ki ≥ 3 for i = 1, 2, . . . , n, 
with at most one ki being even. Let T = T (k1, k2, . . . , kn) be a torus and F be a set of faulty 
edges with |F | ≤ 2n − 4. Then the graph T − F has a paired 2-DPC. And the upper bound 
2n − 4 of edge faults tolerated is nearly optimal. The result is a generalization of the result 
of Park concerning the case of n = 2 [16]. Our brief proofs are based on a technique that is 
of interest and may find some applications.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Hamiltonian property is one of the major requirements 
in designing network topologies since a topology struc-
ture containing Hamiltonian paths or cycles can efficiently 
simulate algorithms designed on linear arrays or rings. El-
ement (vertex and/or edge) failure is inevitable when a 
large parallel computer system is put in use. In this re-
gard, the fault-tolerant capacity of a network is a critical 
issue in parallel computing. There is a large of literature 
on (fault-tolerant) path and/or cycle embedding of various 
interconnection networks.

Given any two disjoint sets of k labeled vertices S =
{s1, s2, . . . , sk} and T = {t1, t2, . . . , tk} in a graph G , called 
sources and sinks, respectively. If there exist k disjoint 
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paths P1, P2, . . . , Pk in G , where Pi joins si and ti for 
i = 1, 2, . . . , k, and they cover all vertices of G , then G
is said to have a paired many-to-many k-disjoint path 
cover (paired k-DPC for short). It is easy to show that a 
paired k-DPC implies a paired s-DPC for s = 1, 2, . . . , k. 
Therefore, the paired many-to-many k-disjoint path cover 
is stronger than Hamiltonian-connectivity. For k ≥ 2, the 
problem of the paired k-DPC has been investigated for hy-
percubes [4,5,7,8,10] and other classes of interconnection 
networks [11,13,16–18]. Relative problem of an unpaired 
k-DPC of interconnection networks has also been investi-
gated [2,3,22].

The n-dimensional torus T (k1, k2, . . . , k2) (including the 
k-ary n-cube) is one of the most popular interconnec-
tion networks, it has many excellent topological properties. 
The (fault-tolerant) path and/or cycle embedding of tori 
[6,12,21] and k-ary n-cubes [9,14,15,19,20] has been ex-
tensively studied.
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In this paper, we investigate the problem of paired 
2-DPC of the multidimensional torus network with faulty 
edges and obtain the following results.

Theorem 1. Assume even ki ≥ 4 for i = 1, 2, . . . , n. Let T =
T (k1, k2, . . . , kn) be a bipartite n-dimensional torus and F be 
a set of faulty edges with |F | ≤ 2n − 3. Given any four vertices 
s1, t1, s2 and t2 , such that each partite set contains two vertices, 
then the graph T − F has a paired 2-DPC consisting of s1 − t1
path and s2 −t2 path. And the upper bound 2n −3 of edge faults 
tolerated is optimal.

Theorem 2. Assume ki ≥ 3 for i = 1, 2, . . . , n, with at most 
one ki being even. Let T = T (k1, k2, . . . , kn) be a non-bipartite 
n-dimensional torus and F be a set of faulty edges with |F | ≤
2n − 4. Given any four vertices s1, t1, s2 and t2 , then the graph 
T − F has a paired 2-DPC consisting of s1 − t1 path and s2 − t2
path. The upper bound 2n − 4 of edge faults tolerated is nearly 
optimal.

Our results generalize the results of Park et al. concern-
ing the case of n = 2 (see Lemmas 2 and 3). In Section 5, 
we consider the problem of paired 2-DPC of general non-
bipartite multidimensional tori with faulty edges and ob-
tain a result (Theorem 4) similar to Theorem 2. Our brief 
proofs of the theorems are based on a technique (Theo-
rem 3 in Section 3) that is of interest and may find some 
applications.

2. Preliminaries

The terminology and notation used in this paper fol-
low [1]. As usual, the vertex set and edge set of a graph G
are denoted by V (G) and E(G), respectively. We use P =
(v1, v2, . . . , vk) to denote a path with k vertices, where 
two vertices v1 and vk are called its end-vertices, and P
is also called a v1 − vk path. We use C to denote a cy-
cle with at least three vertices. A cycle (respectively, path) 
containing all vertices of a graph G is called a Hamilto-
nian cycle (respectively, Hamiltonian path) of G . A graph 
is bipartite if its vertex set has a bipartition. A necessary 
and sufficient condition for a graph to be bipartite is that 
it contains no cycle with odd vertices. Let E ′ ⊂ E(G), the 
notation G − E ′ denotes the subgraph obtained from G by 
removing all edges in E ′ .

Let ki ≥ 3 for i = 1, 2, . . . , n. An n-dimensional torus 
T (k1, k2, . . . , kn) is a graph with 

∏n
i=1 ki vertices, its any 

vertex v can be denoted by an n-tuple v = (x1, x2, . . . , xn), 
where 0 ≤ xi ≤ ki − 1 for i = 1, 2, . . . , n, and the ver-
tex v is adjacent to exactly 2n vertices (x1, . . . , xi−1, xi ±
1, xi+1, . . . , xn), where xi + 1 and xi − 1 are taken modulo 
ki for i = 1, 2, . . . , n. For any i, an edge between two ver-
tices (x1, . . . , xi−1, xi, xi+1, . . . , xn) and (x1, . . . , xi−1, xi +
1, xi+1, . . . , xn) (or (x1, . . . , xi−1, xi − 1, xi+1, . . . , xn)) is 
called an edge of dimension i, and the set of all i-dimen-
sional edges is denoted by Ei for i = 1, 2, . . . , n.

It is easy to see that E(T ) = ⋃n
i=1 Ei and the torus 

T = T (k1, k2, . . . , kn) is vertex-symmetric. If k1 = k2 = . . . =
kn = k, then T is called a k-ary n-cube, and denoted by Q k

n . 
Clearly, Q k

n is also edge-symmetric.

Let G and H be two graphs with V (G) = {u1, u2, . . . ,
um} and V (H) = {v1, v2, . . . , vn}. The Cartesian product of 
two graphs G and H , denoted by G × H , is the graph with 
V (G × H) = {ui v j |1 ≤ i ≤ m, 1 ≤ j ≤ n}, and a vertex uv is 
adjacent to a vertex u′v ′ if and only if u = u′ and (v, v ′) ∈
E(H), or v = v ′ and (u, u′) ∈ E(G).

One can recursively define the Cartesian product of n
graphs. The Cartesian product of graphs satisfies the com-
mutative law and the associative law.

It is easy to show that the n-dimensional torus T (k1,

k2, . . . , kn) is isomorphic to Ck1 × Ck2 × . . .× Ckn , where Cki

is a cycle with ki(≥ 3) vertices for i = 1, 2, . . . , n. Thus,

T (k1,k2, . . . ,kn) = T (k1,k2, . . . ,kn−1) × Ckn

= T (k1,k2, . . . ,kn−2) × T (kn−1,kn),

this simple fact will be used in the proof of the theorems.
We give three lemmas as follows.

Lemma 1. (See [12].) Let T = T (k1, k2, . . . , kn) be an n-dimen-
sional torus and F be a set of faulty edges with |F | ≤ 2n − 2. 
Then the graph T − F contains a Hamiltonian cycle.

Lemma 2. (See [17].) Assume even ki ≥ 4 for i = 1, 2. Let T =
T (k1, k2) be a bipartite torus, f be a faulty edge, and s1, t1, s2
and t2 be any four vertices, such that each partite set contains 
two vertices. Then the graph T − f has a paired 2-DPC consist-
ing of s1 − t1 path and s2 − t2 path.

Lemma 3. (See [16].) Assume k1 ≥ 3 and odd k2 ≥ 3. Let 
T (k1, k2) be a non-bipartite torus, and s1, t1, s2 and t2 be any 
four vertices. Then the torus T (k1, k2) has a paired 2-DPC con-
sisting of s1 − t1 path and s2 − t2 path.

3. Theorem 3 and its proof

We give the following Theorem 3 that is a main tech-
nique of our brief proofs of Theorems 1, 2 and 4, and it is 
of interest and may find some applications.

Theorem 3. Assume G and H are two graphs with V (G) =
{u1, u2, . . . , um} and V (H) = {v1, v2, . . . , vn}, and G × H is 
the Cartesian product of G and H. Let G( j) = G × v j be a copy 
of G in G × H for j = 1, 2, . . . , n, and H (i) = ui × H be a copy 
of H in G × H for i = 1, 2, . . . , m. Assume F0 and F1 are two 
disjoint sets of faulty edges in the Cartesian product G × H, such 
that F0 ⊂ ⋃n

j=1 E(G( j)) and F1 ⊂ ⋃m
i=1 E(H (i)).

(1) If f ∈ F0 , we use f ′ to denote the corresponding edge 
of f in the graph G(1), and if f ∈ F1 , we use f ′ to denote the 
corresponding edge of f in the graph H (1) . Let F ′

0 = { f ′| f ∈
F0} ⊂ E(G(1)) and F ′

1 = { f ′| f ∈ F1} ⊂ E(H (1)). Assume the 
graph G(1) − F ′

0 contains a subgraph G0 and the graph H (1) −
F ′

1 contains a subgraph H0. Then the graph G × H − (F0 ∪ F1)

contains a subgraph G0 × H0 .
(2) Assume the graph G contains a subgraph G0 by removing 

at most r0 arbitrary edges, and the graph H contains a sub-
graph H0 by removing at most r1 arbitrary edges. If |F0| ≤ r0
and |F1| ≤ r1 , then the graph G × H − (F0 ∪ F1) contains a 
subgraph G0 × H0 .
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