Paired 2-disjoint path covers of multidimensional torus networks with faulty edges ${ }^{\text {* }}$

Xie-Bin Chen
College of Mathematics and Statistics, Minnan Normal University, Zhangzhou, Fujian 363000, China

A R T I C L E I N F O

Article history:

Received 6 June 2015
Received in revised form 2 September 2015
Accepted 1 October 2015
Available online 23 October 2015
Communicated by M. Yamashita

Keywords:

Paired disjoint path cover
Fault-tolerance
Multidimensional torus
Cartesian product of graphs
Interconnection network

Abstract

A paired k-disjoint path cover (paired k-DPC for short) of a graph is a set of k disjoint paths joining k distinct source-sink pairs that cover all vertices of the graph. Clearly, the paired k-DPC is stronger than Hamiltonian-connectivity. The n-dimensional torus $T\left(k_{1}, k_{2}, \ldots, k_{n}\right)$ (including the k-ary n-cube Q_{n}^{k}) is one of the most popular interconnection networks. In this paper, we obtain the following results. (1) Assume even $k_{i} \geq 4$ for $i=1,2, \ldots, n$. Let $T=T\left(k_{1}, k_{2}, \ldots, k_{n}\right)$ be a bipartite torus and F be a set of faulty edges with $|F| \leq 2 n-3$. Given any four vertices s_{1}, t_{1}, s_{2} and t_{2}, such that each partite set contains two vertices. Then the graph $T-F$ has a paired 2 -DPC consisting of $s_{1}-t_{1}$ path and $s_{2}-t_{2}$ path. And the upper bound $2 n-3$ of edge faults tolerated is optimal. The result is a generalization of the result of Park et al. concerning the case of $n=2$ [17]. (2) Assume $k_{i} \geq 3$ for $i=1,2, \ldots, n$, with at most one k_{i} being even. Let $T=T\left(k_{1}, k_{2}, \ldots, k_{n}\right)$ be a torus and F be a set of faulty edges with $|F| \leq 2 n-4$. Then the graph $T-F$ has a paired 2 -DPC. And the upper bound $2 n-4$ of edge faults tolerated is nearly optimal. The result is a generalization of the result of Park concerning the case of $n=2$ [16]. Our brief proofs are based on a technique that is of interest and may find some applications.

(C) 2015 Elsevier B.V. All rights reserved.

1. Introduction

Hamiltonian property is one of the major requirements in designing network topologies since a topology structure containing Hamiltonian paths or cycles can efficiently simulate algorithms designed on linear arrays or rings. Element (vertex and/or edge) failure is inevitable when a large parallel computer system is put in use. In this regard, the fault-tolerant capacity of a network is a critical issue in parallel computing. There is a large of literature on (fault-tolerant) path and/or cycle embedding of various interconnection networks.

Given any two disjoint sets of k labeled vertices $S=$ $\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ and $T=\left\{t_{1}, t_{2}, \ldots, t_{k}\right\}$ in a graph G, called sources and sinks, respectively. If there exist k disjoint

[^0]paths $P_{1}, P_{2}, \ldots, P_{k}$ in G, where P_{i} joins s_{i} and t_{i} for $i=1,2, \ldots, k$, and they cover all vertices of G, then G is said to have a paired many-to-many k-disjoint path cover (paired k-DPC for short). It is easy to show that a paired k-DPC implies a paired s-DPC for $s=1,2, \ldots, k$. Therefore, the paired many-to-many k-disjoint path cover is stronger than Hamiltonian-connectivity. For $k \geq 2$, the problem of the paired k-DPC has been investigated for hypercubes $[4,5,7,8,10]$ and other classes of interconnection networks [11,13,16-18]. Relative problem of an unpaired k-DPC of interconnection networks has also been investigated [2,3,22].

The n-dimensional torus $T\left(k_{1}, k_{2}, \ldots, k_{2}\right)$ (including the k-ary n-cube) is one of the most popular interconnection networks, it has many excellent topological properties. The (fault-tolerant) path and/or cycle embedding of tori [$6,12,21$] and k-ary n-cubes [$9,14,15,19,20$] has been extensively studied.

In this paper, we investigate the problem of paired 2-DPC of the multidimensional torus network with faulty edges and obtain the following results.

Theorem 1. Assume even $k_{i} \geq 4$ for $i=1,2, \ldots, n$. Let $T=$ $T\left(k_{1}, k_{2}, \ldots, k_{n}\right)$ be a bipartite n-dimensional torus and F be a set of faulty edges with $|F| \leq 2 n-3$. Given any four vertices s_{1}, t_{1}, s_{2} and t_{2}, such that each partite set contains two vertices, then the graph $T-F$ has a paired 2-DPC consisting of $s_{1}-t_{1}$ path and $s_{2}-t_{2}$ path. And the upper bound $2 n-3$ of edge faults tolerated is optimal.

Theorem 2. Assume $k_{i} \geq 3$ for $i=1,2, \ldots, n$, with at most one k_{i} being even. Let $T=T\left(k_{1}, k_{2}, \ldots, k_{n}\right)$ be a non-bipartite n-dimensional torus and F be a set of faulty edges with $|F| \leq$ $2 n-4$. Given any four vertices s_{1}, t_{1}, s_{2} and t_{2}, then the graph $T-F$ has a paired 2-DPC consisting of $s_{1}-t_{1}$ path and $s_{2}-t_{2}$ path. The upper bound $2 n-4$ of edge faults tolerated is nearly optimal.

Our results generalize the results of Park et al. concerning the case of $n=2$ (see Lemmas 2 and 3). In Section 5, we consider the problem of paired 2-DPC of general nonbipartite multidimensional tori with faulty edges and obtain a result (Theorem 4) similar to Theorem 2. Our brief proofs of the theorems are based on a technique (Theorem 3 in Section 3) that is of interest and may find some applications.

2. Preliminaries

The terminology and notation used in this paper follow [1]. As usual, the vertex set and edge set of a graph G are denoted by $V(G)$ and $E(G)$, respectively. We use $P=$ $\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ to denote a path with k vertices, where two vertices v_{1} and v_{k} are called its end-vertices, and P is also called a $v_{1}-v_{k}$ path. We use C to denote a cycle with at least three vertices. A cycle (respectively, path) containing all vertices of a graph G is called a Hamiltonian cycle (respectively, Hamiltonian path) of G. A graph is bipartite if its vertex set has a bipartition. A necessary and sufficient condition for a graph to be bipartite is that it contains no cycle with odd vertices. Let $E^{\prime} \subset E(G)$, the notation $G-E^{\prime}$ denotes the subgraph obtained from G by removing all edges in E^{\prime}.

Let $k_{i} \geq 3$ for $i=1,2, \ldots, n$. An n-dimensional torus $T\left(k_{1}, k_{2}, \ldots, k_{n}\right)$ is a graph with $\prod_{i=1}^{n} k_{i}$ vertices, its any vertex v can be denoted by an n-tuple $v=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, where $0 \leq x_{i} \leq k_{i}-1$ for $i=1,2, \ldots, n$, and the vertex v is adjacent to exactly $2 n$ vertices ($x_{1}, \ldots, x_{i-1}, x_{i} \pm$ $1, x_{i+1}, \ldots, x_{n}$), where $x_{i}+1$ and $x_{i}-1$ are taken modulo k_{i} for $i=1,2, \ldots, n$. For any i, an edge between two vertices $\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right)$ and $\left(x_{1}, \ldots, x_{i-1}, x_{i}+\right.$ $\left.1, x_{i+1}, \ldots, x_{n}\right)$ (or ($x_{1}, \ldots, x_{i-1}, x_{i}-1, x_{i+1}, \ldots, x_{n}$)) is called an edge of dimension i, and the set of all i-dimensional edges is denoted by E_{i} for $i=1,2, \ldots, n$.

It is easy to see that $E(T)=\bigcup_{i=1}^{n} E_{i}$ and the torus $T=T\left(k_{1}, k_{2}, \ldots, k_{n}\right)$ is vertex-symmetric. If $k_{1}=k_{2}=\ldots=$ $k_{n}=k$, then T is called a k-ary n-cube, and denoted by Q_{n}^{k}. Clearly, Q_{n}^{k} is also edge-symmetric.

Let G and H be two graphs with $V(G)=\left\{u_{1}, u_{2}, \ldots\right.$, $\left.u_{m}\right\}$ and $V(H)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The Cartesian product of two graphs G and H, denoted by $G \times H$, is the graph with $V(G \times H)=\left\{u_{i} v_{j} \mid 1 \leq i \leq m, 1 \leq j \leq n\right\}$, and a vertex $u v$ is adjacent to a vertex $u^{\prime} v^{\prime}$ if and only if $u=u^{\prime}$ and $\left(v, v^{\prime}\right) \in$ $E(H)$, or $v=v^{\prime}$ and $\left(u, u^{\prime}\right) \in E(G)$.

One can recursively define the Cartesian product of n graphs. The Cartesian product of graphs satisfies the commutative law and the associative law.

It is easy to show that the n-dimensional torus $T\left(k_{1}\right.$, k_{2}, \ldots, k_{n}) is isomorphic to $C_{k_{1}} \times C_{k_{2}} \times \ldots \times C_{k_{n}}$, where $C_{k_{i}}$ is a cycle with $k_{i}(\geq 3)$ vertices for $i=1,2, \ldots, n$. Thus,

$$
\begin{aligned}
T\left(k_{1}, k_{2}, \ldots, k_{n}\right) & =T\left(k_{1}, k_{2}, \ldots, k_{n-1}\right) \times C_{k_{n}} \\
& =T\left(k_{1}, k_{2}, \ldots, k_{n-2}\right) \times T\left(k_{n-1}, k_{n}\right),
\end{aligned}
$$

this simple fact will be used in the proof of the theorems.
We give three lemmas as follows.

Lemma 1. (See [12].) Let $T=T\left(k_{1}, k_{2}, \ldots, k_{n}\right)$ be an n-dimensional torus and F be a set of faulty edges with $|F| \leq 2 n-2$. Then the graph $T-F$ contains a Hamiltonian cycle.

Lemma 2. (See [17].) Assume even $k_{i} \geq 4$ for $i=1$, 2. Let $T=$ $T\left(k_{1}, k_{2}\right)$ be a bipartite torus, f be a faulty edge, and s_{1}, t_{1}, s_{2} and t_{2} be any four vertices, such that each partite set contains two vertices. Then the graph $T-f$ has a paired 2-DPC consisting of $s_{1}-t_{1}$ path and $s_{2}-t_{2}$ path.

Lemma 3. (See [16].) Assume $k_{1} \geq 3$ and odd $k_{2} \geq 3$. Let $T\left(k_{1}, k_{2}\right)$ be a non-bipartite torus, and s_{1}, t_{1}, s_{2} and t_{2} be any four vertices. Then the torus $T\left(k_{1}, k_{2}\right)$ has a paired 2-DPC consisting of $s_{1}-t_{1}$ path and $s_{2}-t_{2}$ path.

3. Theorem 3 and its proof

We give the following Theorem 3 that is a main technique of our brief proofs of Theorems 1, 2 and 4, and it is of interest and may find some applications.

Theorem 3. Assume G and H are two graphs with $V(G)=$ $\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ and $V(H)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, and $G \times H$ is the Cartesian product of G and H. Let $G^{(j)}=G \times v_{j}$ be a copy of G in $G \times H$ for $j=1,2, \ldots, n$, and $H^{(i)}=u_{i} \times H$ be a copy of H in $G \times H$ for $i=1,2, \ldots, m$. Assume F_{0} and F_{1} are two disjoint sets of faulty edges in the Cartesian product $G \times H$, such that $F_{0} \subset \bigcup_{j=1}^{n} E\left(G^{(j)}\right)$ and $F_{1} \subset \bigcup_{i=1}^{m} E\left(H^{(i)}\right)$.
(1) If $f \in F_{0}$, we use f^{\prime} to denote the corresponding edge of f in the graph $G^{(1)}$, and if $f \in F_{1}$, we use f^{\prime} to denote the corresponding edge of f in the graph $H^{(1)}$. Let $F_{0}^{\prime}=\left\{f^{\prime} \mid f \in\right.$ $\left.F_{0}\right\} \subset E\left(G^{(1)}\right)$ and $F_{1}^{\prime}=\left\{f^{\prime} \mid f \in F_{1}\right\} \subset E\left(H^{(1)}\right)$. Assume the graph $G^{(1)}-F_{0}^{\prime}$ contains a subgraph G_{0} and the graph $H^{(1)}-$ F_{1}^{\prime} contains a subgraph H_{0}. Then the graph $G \times H-\left(F_{0} \cup F_{1}\right)$ contains a subgraph $G_{0} \times H_{0}$.
(2) Assume the graph G contains a subgraph G_{0} by removing at most r_{0} arbitrary edges, and the graph H contains a subgraph H_{0} by removing at most r_{1} arbitrary edges. If $\left|F_{0}\right| \leq r_{0}$ and $\left|F_{1}\right| \leq r_{1}$, then the graph $G \times H-\left(F_{0} \cup F_{1}\right)$ contains a subgraph $G_{0} \times H_{0}$.

https://daneshyari.com/en/article/10331031

Download Persian Version
https://daneshyari.com/article/10331031

Daneshyari.com

[^0]: 放 The work was supported by NNSF of China (No. 11401290).
 E-mail address: chenxbfz@163.com.

