Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

The linear complexity of binary sequences of length 2p with optimal three-level autocorrelation

V. Edemskiy*, A. Palvinskiy

Department of Applied Mathematics and Informatics, Novgorod State University, Veliky Novgorod, Russia

ARTICLE INFO

Article history: Received 1 March 2015 Received in revised form 10 August 2015 Accepted 15 September 2015 Available online 25 September 2015 Communicated by S.M. Yiu

Keywords: Cryptography Linear complexity Binary sequences

1. Introduction

Autocorrelation is an important measure of pseudorandom sequence for their application in code-division multiple access systems, spread spectrum communication systems, radar systems and so on [5]. An important problem in sequence design is to find sequences with optimal autocorrelation. In their paper, Ding et al. [3] give several new families of binary sequences of period 2p with optimal autocorrelation {-2, 2}. These sequences have also been referred to as generalized cyclotomic sequences.

The linear complexity is another important characteristic of pseudo-random sequence significant for cryptographic applications. It is defined as the length of the shortest linear feedback shift register that can generate the sequence [8]. The linear complexity of above-mentioned sequences over the finite field of order two was investigated in [11] (see also references therein). Also, the linear complexity of several cyclotomic sequences of length pwas derived in [1,2] over the finite field \mathbb{F}_p and Legendre sequences over \mathbb{F}_q in [10].

http://dx.doi.org/10.1016/j.ipl.2015.09.007 0020-0190/© 2015 Elsevier B.V. All rights reserved.

ABSTRACT

In this paper we derive the linear complexity of binary sequences of length 2p with optimal three-level autocorrelation. These almost balanced and balanced sequences are constructed by cyclotomic classes of order four using a method presented by Ding et al. We investigate the linear complexity of above-mentioned sequences over the finite fields of different orders.

© 2015 Elsevier B.V. All rights reserved.

In this paper we derive the linear complexity of binary sequences of length 2p from [3] over the finite field of odd characteristic q, q = p in Section 3 and $q \neq p$ in Section 4. We show the linear complexity of these sequences to be high for any length.

2. The definition of sequences

First, we briefly repeat the basic definitions from [3].

Let *p* be a prime of the form $p \equiv 1 \pmod{4}$, and let θ be a primitive root modulo *p* [7]. By definition, put $D_0 = \{\theta^{4s} \mod p; s = 1, ..., (p - 1)/4\}$ and $D_n = \theta^n D_0$, n = 1, 2, 3. Then D_n are cyclotomic classes of order four [6].

The ring residue classes $\mathbb{Z}_{2p} \cong \mathbb{Z}_2 \times \mathbb{Z}_p$ relative to isomorphism $\phi(a) = (a \mod 2, a \mod p)$ [7]. Ding et al. considered sequences defined as

$$s_i = \begin{cases} 1, & \text{if } i \mod 2p \in C; \\ 0, & \text{if } i \mod 2p \notin C, \end{cases}$$
(1)

for $C = \phi^{-1} (\{0\} \times (D_k \cup D_j) \cup \{1\} \times (D_l \cup D_j))$ where i, j, and l are pairwise distinct integers between 0 and 3, also for $C^{(0)} = C \cup \{0\}$ [3].

By [3], if $\{s_i\}$ have an optimal autocorrelation value then $p \equiv 5 \pmod{8}$ and $p = 1 + 4y^2$ or $p = x^2 + 4$, y = 1.

^{*} Corresponding author. Tel.: +78162629972; fax: 78162624110. E-mail address: Vladimir.Edemsky@novsu.ru (V. Edemskiy).

Here *x*, *y* are integers and $x \equiv 1 \pmod{4}$. In what follows, we will consider only these *p*.

To begin with, we give another definition of the sequence $\{s_i\}$. It is known that if g is an odd number in the pair θ , $\theta + p$, then g is a primitive root modulo 2p [7]. By definition, put $H_0 = \{g^{4s} \mod 2p; s = 1, ..., (p-1)/4\}.$ Denote by H_n a set $g^n H_0$, n = 1, 2, 3. Further, we will consider the indices of H_n modulo 4.

Since $p \equiv 5 \pmod{8}$, it follows that $ind_{\theta}2 \equiv 1 \pmod{4}$ or $ind_{\theta}2 \equiv 3 \pmod{4}$ [7]. If $ind_{\theta}2 \equiv 1 \pmod{4}$ then $ind_{\theta^{-1}}2 \equiv 1$ 3(mod4). Hence, without loss of generality, we can assume that $ind_{\theta}2 \equiv 3 \pmod{4}$. We choose $ind_{\theta}2 \equiv 3 \pmod{4}$ because below we will investigate the sequences for y = 1.

Lemma 1.

(i) $\phi^{-1}(\{0\} \times D_n) = 2H_{n-3}, n = 0, \dots, 3;$ (ii) $\phi^{-1}(\{1\} \times D_n) = H_n, n = 0, \dots, 3;$ (iii) $2H_{n-3} = H_n + p, n = 0, \dots, 3.$

Lemma 1 follows from our definitions. So, if $\{s_i\}$ is defined by (1) then

$$s_{i} = \begin{cases} 1, & \text{if } i \mod 2p \in 2H_{k-3} \cup 2H_{j-3} \\ & \cup H_{l} \cup H_{j}; \\ 0, & \text{if else.} \end{cases}$$
(2)

3. The linear complexity of sequences over \mathbb{F}_{p^r}

First of all, we derive the linear complexity of $\{s_i\}$ for q = p. In this case we use Günther–Blahut theorem (see, for example [9]).

Lemma 2. *Let* $0 \le m \le 3$ *and* d = m(p - 1)/4*. Then*

$$\sum_{i \in H_m} i^n = \begin{cases} 0, & \text{if } 1 \le n \le (p-5)/4, \\ g^d(p-1)/4, & \text{if } n = (p-1)/4. \end{cases}$$

Proof. By definition of H_m we have $\sum_{i \in H_m} i^{(p-1)/4} =$ $g^{d}(p-1)/4$. Suppose n < (p-1)/4; denote $\sum_{i \in H_0}^{m} i^{n}$ by A. Since $\sum_{j=1}^{p-1} j^n = 0$, it follows that $0 = \sum_{t=0}^{3} \sum_{i \in H_t} i^n = A(g^{4n} - 1)/(g^n - 1)$. Hence, A = 0 and $\sum_{i \in H_m} i^n = 0$. \Box

Let us introduce the auxiliary polynomials $F_m(x) =$ $\sum_{i \in H_m} x^i$.

Lemma 3. Let $F_m^{(n)}(x)$ be a formal derivative of order n of the polynomial $F_m(x)$. Then

$$F_m^{(n)}(\pm 1) = \begin{cases} 0, & \text{if } 1 \le n \le (p-5)/4, \\ g^d(p-1)/4, & \text{if } n = (p-1)/4. \end{cases}$$

Proof. Let $T_1(x) = xF'_m(x)$ and $T_n(x) = xT'_{n-1}(x)$, n = 2, 3,.... Then $T_n(\pm 1) = \pm \sum_{i \in H_m} i^n$, n = 1, 2, ..., and by Lemma 2 $T_n(\pm 1) = 0$ if $1 \le n \le (p-5)/4$; $T_{(p-1)/4}(\pm 1) =$ $\pm g^{d}(p-1)/4.$

To conclude the proof, it remains to note that by definition $T_n(x) = \sum_{j=1}^{n-1} a_j(x) F_m^{(j)}(x) + x^n F_m^{(n)}(x)$, where $a_j(x)$ are polynomials. \Box Our first contribution in this paper is the following.

Theorem 4. Let the almost balanced binary sequences $\{s_i\}$ be defined by (1) for $C = \phi^{-1}(\{0\} \times (D_k \cup D_i) \cup \{1\} \times (D_l \cup D_i)).$ Then L = (7p + 1)/4.

Proof. In this case, by Günther-Blahut theorem we have

$$L = 2p - \min\{j: S^{(j)}(1) \neq 0\} - \min\{j: S^{(j)}(-1) \neq 0\}$$
(3)

where $S(x) = \sum_{i=0}^{2p-1} s_i x^i$ is the polynomial of $\{s_i\}$. By definition S(1) = p - 1. Further, by (2) and by Lemma 1 we obtain

$$S(x) \equiv (x^{p} + 1) \sum_{i \in H_{j}} x^{i} + x^{p} \sum_{i \in H_{k}} x^{i} + \sum_{i \in H_{l}} x^{i} (\operatorname{mod} (x^{2p} - 1)).$$
(4)

Therefore, since $\left(\sum_{i\in H_m} x^i\right)^{(n)} = F_m^{(n)}(x)$ by definition of $F_m^{(n)}(x)$, it follows that

$$S^{(n)}(\pm 1) = \left((x^{p} + 1)F_{j}^{(n)}(x) + x^{p}F_{k}^{(n)}(x) + F_{l}^{(n)}(x) \right) \Big|_{x=\pm 1}.$$
(5)

So, by Lemma 3 we see $S^{(n)}(-1) = 0$ if $0 \le n \le (p-5)/4$ and $\tilde{S}^{((p-1)/4)}(-1) \neq 0$. Then the conclusion of this theorem follows from (3).

Theorem 5. Let the balanced binary sequences $\{s_i\}$ be defined by (1) for $C^{(0)} = C \cup \{0\}$. Then L = (7p + 1)/4.

Proof. Let $S_0(x)$ be the polynomial of $\{s_i\}$ defined by (1) for $C^{(0)} = C \cup \{0\}$. Then $S_0(x) = S(x) + 1$ where S(x) satisfies (4). Therefore, using (5), we can write $S^{(n)}(1) = 0$ if $0 \le n \le (p-5)/4$, $S^{((p-1)/4)}(1) \ne 0$ and $S(-1) \ne 0$. Then the conclusion of this theorem follows from (3).

The results of computing the linear complexity by Berlekamp–Massey algorithm when p = 5, 37, 101, 197, 677 (x = 1) and p = 5, 13, 29, 53, 173, 229, 293 (y = 1)confirm Theorems 4 and 5.

4. The linear complexity of sequences over \mathbb{F}_{q^r} for $q \neq p$

Now we derive the linear complexity of $\{s_i\}$ over \mathbb{F}_{q^r} for $q \neq p$. Let α be a primitive 2p-th root of unity in the extension of the field \mathbb{F}_{q^r} . Then by Blahut's theorem for the linear complexity *L* of the sequence $\{s_i\}$ we have

$$L = 2p - \left| \left\{ i \left| S(\alpha^{i}) = 0, \ i = 0, 1, \dots, 2p - 1 \right\} \right|.$$
(6)

Let us derive L using the procedure proposed in [4]. In the next subsections we consider the values $S(\alpha^i)$, i = $0, 1, \dots, 2p - 1$. But first we need to prove intermediate lemmas.

Download English Version:

https://daneshyari.com/en/article/10331040

Download Persian Version:

https://daneshyari.com/article/10331040

Daneshyari.com