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1. Introduction

Autocorrelation is an important measure of pseudo-
random sequence for their application in code-division
multiple access systems, spread spectrum communication
systems, radar systems and so on [5]. An important prob-
lem in sequence design is to find sequences with optimal
autocorrelation. In their paper, Ding et al. [3] give several
new families of binary sequences of period 2p with op-
timal autocorrelation {—2,2}. These sequences have also
been referred to as generalized cyclotomic sequences.

The linear complexity is another important character-
istic of pseudo-random sequence significant for crypto-
graphic applications. It is defined as the length of the
shortest linear feedback shift register that can generate the
sequence [8]. The linear complexity of above-mentioned
sequences over the finite field of order two was investi-
gated in [11] (see also references therein). Also, the linear
complexity of several cyclotomic sequences of length p
was derived in [1,2] over the finite field F, and Legendre
sequences over Fg in [10].
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In this paper we derive the linear complexity of binary
sequences of length 2p from [3] over the finite field of odd
characteristic g, ¢ = p in Section 3 and q # p in Section 4.
We show the linear complexity of these sequences to be
high for any length.

2. The definition of sequences

First, we briefly repeat the basic definitions from [3].

Let p be a prime of the form p = 1(mod 4), and let
6 be a primitive root modulo p [7]. By definition, put
Do ={0* mod p;s=1,...,(p — 1)/4} and D, = 6"Dy,
n=1,2,3. Then D, are cyclotomic classes of order four
[6].

The ring residue classes Zyp = Zy x Zjp relative to iso-
morphism ¢ (a) = (@ mod 2,a mod p) [7]. Ding et al. con-
sidered sequences defined as

if i mod 2peC; 1)
if i mod 2p ¢C,

for C=¢~1 ({0} x (DxUD;)U{1} x (D;U D)) where i, j,
and [ are pairwise distinct integers between 0 and 3, also
for C@ =cu{o} [3].

By [3], if {s;} have an optimal autocorrelation value
then p=5(mod 8) and p=1+4y? or p=x*>+4,y=1.
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Here x, y are integers and x = 1(mod 4). In what follows,
we will consider only these p.

To begin with, we give another definition of the se-
quence {s;}. It is known that if g is an odd number in the
pair 0, 6 + p, then g is a primitive root modulo 2p [7]. By
definition, put Ho = {g* mod 2p;s=1,...,(p — 1)/4}.
Denote by Hy, a set g"Hg, n =1, 2, 3. Further, we will con-
sider the indices of H, modulo 4.

Since p = 5(mod8), it follows that indy2 = 1(mod4) or
indg2 = 3(mod4) [7]. If indg2 = 1(mod4) then indy-12 =
3(mod4). Hence, without loss of generality, we can as-
sume that indg2 = 3(mod4). We choose indy2 = 3(mod4)
because below we will investigate the sequences for y = 1.

Lemma 1.

(i) 7' ({0} x Dp) =2Hp_3,n=0,...,3;
(ii) ' ({1} x Dp) =Hp,n=0,...,3;
(iii) 2Hp—3=Hp+p,n=0,...,3.

Lemma 1 follows from our definitions.
So, if {s;} is defined by (1) then

1, if i mod 2p € 2H,_3U2H;_3
Si ={
0,

UH; U Hj; (2)
if else.
3. The linear complexity of sequences over I ,r

First of all, we derive the linear complexity of {s;} for
q = p. In this case we use Giinther-Blahut theorem (see,
for example [9]).

Lemma 2.let0 <m <3 andd =m(p — 1)/4. Then

Z"”—{O’ ifl<n<(p—5)/4
T\ glp-1/4, ifn=(p-1)/4

i€eHm

Proof. By definition of H; we have )., iP~1V/4 =
g%(p —1)/4. Suppose n < (p —1)/4; denote ZieHO i" by A.
Since Z?;] j"=0, it follows that 0= Y} ¥ i" =
A(g* —1)/(g" —1). Hence, A=0and } ;. i"=0. O

Let us introduce the auxiliary polynomials Fp(x) =

ZieHm X

Lemma 3. Let F,(,?)(x) be a formal derivative of order n of the
polynomial Fp,(x). Then

Q) 0, ifl<n=<(p-5/4
Fp'(£1) = ;

w (E1) {gdw —1)/4, ifn=(p—1)/4
Proof. Let Tq(x) = xF},(x) and T,(x) = xT,_;(x), n =2,
3,.... Then Ty(£1) = iZieHm i", n=1,2,..., and by
Lemma 2 Tp(£1) =0if 1<n<(p —5)/4; Tp—1)/4(£1) =
+gl(p—1)/4.

To conclude the proof, it remains to note that by defini-

tion Tp(x) = ;’;} aj(x)F,(n]) (%) +x"F,(,T)(x), where a;(x) are
polynomials. O

Our first contribution in this paper is the following.

Theorem 4. Let the almost balanced binary sequences {s;} be
defined by (1) for C = ¢! ({0} x (DxUDjHU{1} x (DU Dj)).
Then L= (7p +1)/4.

Proof. In this case, by Giinther-Blahut theorem we have

L=2p—min{j: SY(1)£0}
—min{j: SY(-1)#0} 3)

where S(x) = 21.2561 sixt is the polynomial of {s;}.
By definition S(1) = p — 1. Further, by (2) and by

Lemma 1 we obtain

Sx=xP+1) in+xp in

iEHj iEHk

+ Y x'(mod (x*P — 1)). (4)
iEHI

(n)

Therefore, since (ZieHm xi) = F,ﬁT)(x) by definition of

F,S?) (x), it follows that
S™ (1) = ((xP + 1)F](.") ®) +xPF (x)
0)
+F (X))|x::|:1' (5)

So, by Lemma 3 we see S™(—1)=0if 0<n < (p —5)/4
and SUP=D/4(—1) £ 0. Then the conclusion of this theo-
rem follows from (3). O

Theorem 5. Let the balanced binary sequences {s;} be defined
by (1) for C® =C U{0}. Then L = (7p + 1) /4.

Proof. Let Sp(x) be the polynomial of {s;} defined by (1)
for C©® = C U {0}. Then Sg(x) = S(x) + 1 where S(x) sat-
isfies (4). Therefore, using (5), we can write S™ (1) =0 if
0<n<(p—5)/4 SP=D/41)£0 and S(—1) # 0. Then
the conclusion of this theorem follows from (3). O

The results of computing the linear complexity by
Berlekamp-Massey algorithm when p = 5,37,101, 197,
677 (x=1) and p = 5,13,29,53,173,229,293 (y = 1)
confirm Theorems 4 and 5.

4. The linear complexity of sequences over Fyr for q # p

Now we derive the linear complexity of {s;} over Fgr
for q # p. Let o be a primitive 2p-th root of unity in the
extension of the field Fyr. Then by Blahut's theorem for the
linear complexity L of the sequence {s;} we have

L=2p—‘{i‘5(ai)=0, i=0,1,...,2p—l”. (6)

Let us derive L using the procedure proposed in [4].
In the next subsections we consider the values S(o'), i =
0,1,...,2p — 1. But first we need to prove intermediate
lemmas.
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