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In a basic related-key attack against a block cipher, the adversary has access to encryptions 
under keys that differ from the target key by bit-flips. In this short note we show that 
for a quantum adversary such attacks are quite powerful: if the secret key is (i) uniquely 
determined by a small number of plaintext–ciphertext pairs, (ii) the block cipher can be 
evaluated efficiently, and (iii) a superposition of related keys can be queried, then the key 
can be extracted efficiently.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The availability of scalable quantum computers would 
jeopardize the security of many currently deployed asym-
metric cryptographic schemes [1]. For symmetric cryptog-
raphy the expectations for a post-quantum setting tend to 
be more optimistic, see, e.g., [2], from which we quote

“quantum computers seem to have very little effect on 
secret-key cryptography, hash functions, etc. Grover’s 
algorithm forces somewhat larger key sizes for secret-
key ciphers, but this effect is essentially uniform across 
ciphers; today’s fastest pre-quantum 256-bit ciphers are 
also the fastest candidates for post-quantum ciphers at 
a reasonable security level.”

Related-key attacks are a powerful cryptanalytic tool 
when exploring block ciphers. In such attacks, the adver-
sary is granted access to encryptions and/or decryptions 
of messages under secret keys which are related to the 
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target key in a known or chosen way. As argued in [3], 
this type of attack is of practical interest, despite the as-
sumptions made. When Winternitz and Hellman described 
this attack model more than 25 years ago, they focused on 
key relations given by bit-flips [4]. An illustrative example 
for an application of this attack model is an attack against 
9 rounds of Rijndael with a 256-bit key, invoking 256 re-
lated keys with a particular choice of the bit-flips [5].

Current approaches to formalize related-key attacks al-
low more general key relations [6,7], and restricting to bit-
flips can be considered to be a rather conservative choice. 
Below we show that for a quantum adversary such a basic 
form of related-key attack is quite powerful. We show that 
the possibility to query a superposition of related keys to 
a block cipher enables the efficient extraction of the secret 
key, if some rather mild conditions are met:

1. the block cipher can be implemented efficiently as a 
quantum circuit, and

2. the secret key is uniquely determined by a small num-
ber of available plaintext–ciphertext pairs.

The attack we describe is unlikely to pose a practical 
threat as querying a superposition of secret keys may not 
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be feasible for a typical implementation. Basically we re-
quire that the attacked honest user grants access to an 
implementation of the block cipher as a quantum circuit. 
Nonetheless, from the structural point of view our obser-
vation indicates an interesting limitation for the security 
guarantees of a block cipher that one can hope to prove in 
a post-quantum scenario, and our setting can be seen in 
the line of Boneh et al.’s quantum-accessible random ora-
cle model [8].

2. Preliminaries

A block cipher with key length k and block length n is 
a family of 2k permutations {E K : {0, 1}n → {0, 1}n}K∈{0,1}k

on bitstrings of length n. Popular block ciphers limit the 
possible choices of the key length k — e. g., for the Ad-
vanced Encryption Standard [9] we have n = 128 and 
k ∈ {128, 192, 256}. To characterize the efficiency of cer-
tain types of attacks, it can nonetheless be convenient 
to consider families of block ciphers, interpreting the key 
length k as a scalable security parameter. Measuring the 
running time of an adversary as a function of k, it is mean-
ingful to speak of an expected polynomial time attack.

2.1. Related-key attacks

The attack model we consider goes back to [4]. After a 
key K ∈ {0, 1}k has been chosen uniformly at random, the 
adversary has access to two oracles:

E : On input a bitmask L ∈ {0, 1}k and a bitstring m ∈
{0, 1}n , this oracle returns the encryption E K⊕L(m)

of m under the key K ⊕ L.
E−1: On input a bitmask L ∈ {0, 1}k and a bitstring c ∈

{0, 1}n , this oracle returns the decryption E−1
K⊕L(c) of 

c under the key K ⊕ L.

After interacting with these oracles, the adversary has to 
output a guess K ′ for K , and it is considered successful 
if and only if K = K ′ . For our attack we will also assume 
that the block cipher at hand can be evaluated efficiently, 
i. e., with a polynomial-size quantum circuit that has the 
secret key and a plaintext as input. For block ciphers that 
are actually used, this condition is of no concern.

The quantum attack below will not involve the decryp-
tion oracle, but we will allow the adversary to query the 
block cipher and also the oracle E with a superposition of 
keys. Finally, we require that the adversary has access to a 
polynomial number of plaintexts m1, . . . , mr such that for 
every pair of keys (K , K ′) ∈ {0, 1}k × {0, 1}k with K �= K ′
the condition

(
E K (m1), . . . , E K (mr)

) �= (
E K ′(m1), . . . , E K ′(mr)

)
(1)

holds. As illustrated by the key schedule of SC2000-256, it 
is possible to have a block cipher where certain secret keys 
result in identical encryptions for all plaintexts [10], but 
this behavior is rather pathological. According to the strict 
key avalanche criterion [11,12], for a fixed plaintext each 
bit of the corresponding ciphertext should change with 
probability 1/2 if a key bit is flipped. So for two secret 

keys K ′ �= K we expect Inequality (1) to hold with prob-
ability about 1 − 2−rn , if the plaintexts mi are pairwise 
different. Facing a total of 22k − 2k key pairs (K , K ′) with 
K �= K ′ , about (22k − 2k) · 2−rn ≤ 22k−rn keys K ′ �= K violat-
ing Eq. (1) are expected. So it seems plausible to estimate 
that

r > 	2k/n
 (2)

plaintexts suffice to ensure that for every K ′ �= K at least 
one separating plaintext mi is available. For the 128-bit 
version of AES, where n = k = 128, one can think of an 
r-value as small as 3. Throughout we will assume that r
satisfies Inequality (2). Then the main idea to mount a 
quantum related-key attack is a reduction to a quantum 
algorithm described in [13] which we describe next.

2.2. Simon’s problem

Let f : {0, 1}k → {0, 1}k′
with k ≤ k′ be a function such 

that one of the following two conditions holds:

(a) f is injective;
(b) there exists a bitstring s ∈ {0, 1}k \ {0k} such that for 

every two distinct x, x′ ∈ {0, 1}k we have

f (x) = f
(
x′) ⇐⇒ x = x′ ⊕ s.

Simon’s problem asks to decide for such a function f
which of the two conditions holds, and in the case (b) to 
find s. Allowing the function f to be evaluated at a super-
position of inputs, [13] establishes the following result:

Theorem 1. Let g(k) be an upper bound for the time needed to 
solve a k × k linear system of equations over the binary field F2, 
and let t f (k) be an upper bound for the time needed to evaluate 
the function f on (a superposition of) inputs from {0, 1}k. Then 
the above problem can be solved in expected time O(k · t f (k) +
g(k)). In particular, for t f = t f (k) being polynomial, the above 
problem can be solved in expected polynomial time.

3. Description of the attack

Alluding to the Electronic Code Book mode of opera-
tion [14, Section 7.2.2], subsequently we will simply write 
E K ( 
m) for the tuple of ciphertext blocks (E K (m1), . . . ,
E K (mr)) ∈ {0, 1}rn . For a fixed, unknown secret key s ∈
{0, 1}k \ {0k} and messages 
m ∈ {0, 1}rn that characterize s
uniquely as described in Section 2, we define the function

f s : {0,1}k → 2{0,1}rn

x �→ {
Ex( 
m), Es⊕x( 
m)

}
.

We remark that for each x in the domain of f s , the im-
age is comprised of two different ciphertexts, i. e., it does 
not collapse to a singleton set. Indeed, this is the case due 
to the choice of the plaintexts m1, . . . , mr as the condition 
s �= 0k implies that Ex( 
m) �= Es⊕x( 
m). We next describe our 
core result, namely a reduction from the problem of find-
ing the secret key s to an instance of Simon’s problem 
which can then be solved efficiently on a quantum com-
puter.
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