
Information Processing Letters 115 (2015) 45–51

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

On triangulation axes of polygons ✩

Wolfgang Aigner a, Franz Aurenhammer a,∗, Bert Jüttler b

a Institute for Theoretical Computer Science, Graz University of Technology, Austria
b Institute of Applied Geometry, Johannes Kepler University Linz, Austria

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 March 2013
Received in revised form 13 August 2014
Accepted 13 August 2014
Available online 22 August 2014
Communicated by B. Doerr

Keywords:
Computational geometry
Polygon
Medial axis
Anisotropic distance
Triangulation
Edge flipping

We propose the triangulation axis as an alternative skeletal structure for a simple polygon P . 
This axis is a straight-line tree that can be interpreted as an anisotropic medial axis of P , 
where inscribed disks are line segments or triangles. The underlying triangulation that 
specifies the anisotropy can be varied, to adapt the axis so as to reflect predominant 
geometrical and topological features of P . Triangulation axes typically have much fewer 
edges and branchings than the Euclidean medial axis or the straight skeleton of P . Still, 
they retain important properties, as for example the reconstructability of P from its 
skeleton. Triangulation axes can be computed from their defining triangulations in O (n)

time. We investigate the effect of using several optimal triangulations for P . In particular, 
careful edge flipping in the constrained Delaunay triangulation leads, in O (n logn) overall 
time, to an axis competitive to ‘high quality axes’ requiring Θ(n3) time for optimization 
via dynamic programming.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Let P be a simply connected and closed polygon in the 
plane. A circular disk D ⊂ P is called maximal (for P ) if 
there is no other disk D ′ ⊂ P with D ′ ⊃ D . The (Euclidean) 
medial axis of P is the set of centers of all maximal disks 
for P . This tree-like skeletal structure has proved a very 
useful descriptor of shape. Applications in diverse areas 
exist, and various construction algorithms have been pro-
posed; see e.g., [2,6,8] and references therein.

The medial axis is a unique structure, as is the so-
called straight skeleton [3,8] of P , which is composed of 
angular bisectors of P and can serve as a piecewise-linear 
alternative to the medial axis. In certain applications, how-
ever, it is desirable to have some flexibility in designing 
a skeletal structure, be it for keeping its size small so as 
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to reflect only the essential parts of P , or for the sake 
of stability with respect to slight boundary changes of P . 
Several attempts have been made to adapt and prune the 
medial axis and the straight skeleton accordingly; see At-
tali et al. [6] and Siddiqi and Pizer [16], and Tanase and 
Veltkamp [17], respectively.

In the present note we propose a different idea, namely, 
of putting some anisotropy on the polygon P . Distances 
are measured differently at different locations within P , 
by varying the shape of the inscribed disks. (Anisotropic 
Voronoi diagrams where distances are measured individu-
ally from each defining point site have been introduced in 
Labelle and Shewchuk [14].) We divide the polygon P into 
triangles, and allot to each triangle a continuous family 
of unit disks, resulting from appropriately defined convex 
distance functions. (Voronoi diagrams for convex distance 
functions have been considered first in Chew and Drys-
dale [11].) The resulting skeleton is a straight-line tree 
resembling (but not equaling) the dual graph of the cho-
sen triangulation of P . It always consists of fewer edges 
than the medial axis or the straight skeleton. When using 
the various known types of triangulation (e.g., constrained 
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Fig. 1. A triangulation axis of a simple polygon.

Delaunay [15,10], minimum weight [13]), and also other 
triangulations optimal in different respects, we gain the 
needed flexibility, with the ultimate aim of defining a sim-
ple, stable, and characteristic skeletal axis structure for P .

In particular, we show that the constrained Delaunay 
triangulation of P , when post-processed by a small num-
ber of edge flips based on visibility within P , leads to sat-
isfactory results: The empty-circle property ensures some 
closeness to the medial axis, and flipping has the effect of 
pruning away unimportant features. Several O (n log n) con-
struction algorithms are available for this triangulation [8], 
so the new skeleton is fast and easier to compute than the 
medial axis or the straight skeleton.

A preliminary version of this work appeared in [4].

2. Triangulation axis

A triangulation T of a simple polygon P is a partition 
of P into triangles whose vertices are all from P . Let P
have n vertices. We will assume n ≥ 4 throughout, so that 
T contains at least one diagonal of P . To define what we 
will call the triangulation axis, MT (P ), of P and T , the trian-
gles which constitute T are categorized into three types: 
ear triangles, link triangles, and branch triangles – having 
one, two, or three sides that are diagonals of P , respec-
tively; see Fig. 2.

Depending on its type, a triangle Δ contributes a spe-
cific part to MT (P ). If Δ is an ear triangle, then its axis 
part is the line segment that connects the midpoint of 
its unique bounding diagonal d of P to the vertex of Δ

opposite to d. If Δ is a link triangle, then it contributes 
to MT (P ) the line segment connecting the midpoints of 
the two bounding diagonals of P . Finally, if Δ is a branch 
triangle, then the three line segments that connect its side 
midpoints to the centroid1 of Δ are taken. See Fig. 2 again, 
where the individual axis parts are drawn in bold lines.

The triangulation axis MT (P ) is now defined as the ge-
ometric graph that has the aforementioned line segments 
as its edges and their endpoints as its vertices. MT (P ) is a 
(straight-line) tree, as can be shown by an easy induction 
argument.

A particular triangulation axis of a polygon is depicted 
in Fig. 1. Observe that link triangles (which typically con-

1 Instead of the centroid, a different suitable point in Δ might be cho-
sen; see Section 6.

Fig. 2. Triangle types: (a) ear triangle, (b) link triangle, and (c) branch 
triangle. Diagonals of P are drawn in dashed style, and triangulation axis 
parts in bold style.

Fig. 3. Maximal disks for the anisotropic convex distance function within 
(a) an ear triangle, (b) a link triangle, and (c) a branch triangle. White 
dots mark the centers (centroids) of the shown disks.

stitute the majority in T ) give rise to homothetic copies 
of P ’s boundary parts in the axis.

Indeed, MT (P ) can be interpreted as an anisotropic me-
dial axis of P . When suitable convex unit disks are used, 
the centroids of all possible maximal inscribed disks for P
(as defined in Section 1) will delineate the triangulation 
axis. This is made explicit in Fig. 3. Maximal disks for ear 
triangles and link triangles are just line segments of vary-
ing slopes. These line segments are parallel to the unique 
bounding diagonal for an ear triangle, see (a), and fan out 
from a vertex for a link triangle, see (b). Maximal disks for 
a branch triangle are of triangular shape, see (c), based on 
a particular side of the branch triangle and having one ver-
tex on the respective median line. Note that maximal disks 
(and thus the anisotropy they exert) change continuously 
when their centers are moved along MT (P ).

Triangulation axes are quite natural skeletal structures 
for polygons, though as far as is known to the authors, 
they did not receive much attention in the literature. We 
found recent mention of a triangulation axis in Wang [18]
for GIS applications, who refers to Ai and van Oosterom [1]
for earlier use. No systematic study of MT (P ) has been 
provided though, and only the constrained Delaunay tri-
angulation [10] of P has been used for T . In the following 
sections, we will elaborate on some structural and algo-
rithmic properties of triangulation axes, and give some 
experimental results that reflect the behavior of this struc-
ture in dependency of the underlying polygon triangula-
tion.

3. Basic properties

A nice feature of triangulation axes is their small com-
binatorial size.

Lemma 1. Any triangulation axis of a simple polygon P with n
vertices has between n − 2 and 2n − 6 edges.
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