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Opacity is a generic security property, that has been defined on (non-probabilistic) 
transition systems and later on Markov chains with labels. For a secret predicate, given 
as a subset of runs, and a function describing the view of an external observer, the 
value of interest for opacity is a measure of the set of runs disclosing the secret. We 
extend this definition to the richer framework of Markov decision processes, where non-
deterministic choice is combined with probabilistic transitions, and we study related 
decidability problems with partial or complete observation hypotheses for the schedulers. 
We prove that all questions are decidable with complete observation and ω-regular secrets. 
With partial observation, we prove that all quantitative questions are undecidable but 
the question whether a system is almost surely non-opaque becomes decidable for a 
restricted class of ω-regular secrets, as well as for all ω-regular secrets under finite-
memory schedulers.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Due to the tremendous increase in network communi-
cations in the last thirty years, a large amount of work was 
devoted to the study of security properties, to ensure the 
preservation of secret data during these communications. 
Information flow characterizes the (possibly illegal and in-
direct) transmission of such data from a high level user to 
a low level one. Already in the eighties, a basic version of 
non-interference was defined in [20], stating that a system 
is secure if high level actions cannot be detected by low 
level observations. Among all the subsequent studies, opac-
ity was introduced in [24,7] as a general framework where 
a wide range of security properties can be specified, for a 
system interacting with a passive attacker. For a system S , 
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opacity is parameterized by a secret predicate ϕ described 
as a subset of executions and an observation function over 
executions. The system is opaque if, for any secret run 
in ϕ , there is another run not in ϕ with the same observa-
tion. When this property is satisfied, the passive attacker 
cannot learn from the observation if the execution is se-
cret. Ensuring opacity by controller synthesis was further 
studied in [18,9] while relations with two-player games 
were established in [23].

Deciding opacity, however, only provides a yes/no an-
swer, but no evaluation of the amount of information 
gained by a passive attacker. Since more and more secu-
rity protocols make use of randomization to reach some 
security objectives [16,29], it becomes important to extend 
specification frameworks in order to handle measures of 
information leaks. For this reason, quantitative approaches 
for security properties were already advocated in [25,34], 
mostly based on information theory. From this point on, 
numerous studies were devoted to the computation of 
(covert) channel capacity in various cases (see e.g. [22]) or 
more generally information leakage.
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To provide quantitative measures of opacity, several 
definitions have been proposed in a probabilistic set-
ting [21,2,5,8,3,31]. They were, however, restricted to 
purely probabilistic models, based on Markov chains
equipped with labels, to permit observations on runs. We 
show here how to extend some measures of [3] to Markov 
decision processes (MDPs) with infinite runs. The simplest 
one computes what we call here the probabilistic disclosure, 
providing a probabilistic measure for the set of runs whose 
observation reveals that a secret run has been executed. 
With the richer model of MDPs, where non-determinism
is combined with probabilities, a scheduler can cooper-
ate with the passive external observer to break the system 
opacity. We focus on ω-regular secrets and morphisms for 
the observation functions, and prove that the probabilistic 
disclosure can be computed when the scheduler can dis-
tinguish the states of the model. The class of ω-regular 
languages provides a robust specification language [32], 
extending classical regular languages from finite words 
to infinite words. Such ω-regular languages are often 
needed to express opacity in the non-probabilistic as well 
as the probabilistic setting. With partial observation for 
the schedulers, the question whether a system is almost 
surely non-opaque remains decidable for a restricted class 
of ω-regular secrets, as well as for all ω-regular secrets 
under finite-memory schedulers, whereas all quantitative 
problems become undecidable. Moreover, for all decidable 
results we present optimal complexity results: for com-
plete observation (where the scheduler can distinguish 
states of the model) we present polynomial-time results 
with respect to the size of the model, whereas for partial 
observation, for all decidable results we show EXPTIME-
completeness.

We recall some definitions for probabilistic models in 
Section 2. Opacity and disclosure are defined for Markov 
decision processes in Section 3 and proofs for the (un)de-
cidability results are given in Section 4. We conclude in 
Section 5.

2. Preliminaries

For a finite alphabet Z , we denote by Z∗ the set of fi-
nite words over Z , by Zω the set of infinite words over Z , 
with Z∞ = Z∗ ∪ Zω .

We first recall some classical notions on automata.

2.1. Automata

Definition 1. A (deterministic) automaton is a tuple A =
(Q , Σ, δ, q0, F ), where Q is a finite set of states, Σ is an 
input alphabet, δ : Q × Σ → Q is a transition function, 
q0 ∈ Q is the initial state, and F is either a subset of Q , or 
a mapping from Q to a finite subset of natural numbers.

Accepting conditions defined from F will be described 
hereafter.

A run of the automaton A on a word w = a1a2 · · · ∈ Σω

is an infinite sequence ρ = q0q1 · · · such that for all i ≥ 0, 
qi+1 = δ(qi, ai+1). The accepting runs of an automaton are 
defined according to the acceptance condition. In the se-

quel, we consider Büchi, co-Büchi and parity acceptance 
conditions.

For a run ρ = q0q1 · · · ∈ Q ω , we let Inf(ρ) be the 
set of states appearing infinitely often in the sequence. 
When F ⊆ Q , we note Büchi(F ) = {ρ ∈ Q ω | Inf(ρ) ∩
F 
= ∅} and co-Büchi(F ) = {ρ ∈ Q ω | Inf(ρ) ∩ F = ∅}. When 
F : Q → {1, . . . , k}, with k ∈ N, the acceptance condi-
tion is a parity condition. We note Parity(F ) = {ρ ∈ Q ω |
min{F (q) | q ∈ Inf(ρ)} is even}. For an acceptance condition 
Acc ∈ {Büchi(F ), co-Büchi(F ), Parity(F )}, we say that a run 
ρ over a word w is accepting if it is in Acc. The word w is 
then said to be accepted by ρ .

We denote respectively by LB(A), LC (A) and L P (A)

the set of words accepted by the runs of A in Büchi(F ), 
co-Büchi(F ) and Parity(F ). A subset L of Σω is ω-regular 
if there is an automaton A such that L = L P (A).

In the sequel, we write DBA for deterministic Büchi au-
tomata, DCA for deterministic co-Büchi automata and DPA 
for deterministic parity automata, according to the choice 
of acceptance condition.

2.2. Probabilistic systems

We consider systems modeled by Markov decision pro-
cesses, that generalize Markov chains by combining non-
deterministic actions with probabilistic transitions. To de-
fine opacity measures on Markov chains, the probabilistic 
transitions are equipped with labels that may be used to 
define an observation function on runs. In the setting of 
Markov decision processes, labels are also added on the 
probabilistic transitions. They may be observed by a pas-
sive attacker while non-deterministic actions are chosen by 
a scheduler, as explained below.

Given a countable set S , a discrete distribution is a 
mapping μ : S → [0, 1] such that 

∑
s∈S μ(s) = 1. The set 

of all discrete distributions on S is denoted by D(S).

Definition 2 (Markov Decision Process). A Markov decision 
process (MDP) is a tuple A = (Q , Σ, Act, Δ, q0) where:

• Q is a finite set of states,
• Act is a finite set of actions,
• Σ is a finite alphabet for the labeling of transitions,
• Δ : Q × Act →D(Σ × Q ) is a (partial) transition func-

tion that associates with a state and an action from 
Act a probability distribution over the possible transi-
tion labels and successor states,

• q0 is the initial state.

Fig. 1 shows an MDP with four actions. Actions α1 and 
α2 bear two different distributions for labels a and b. They 
start either from state q0 or from state q′

0, and lead to 
either q1 or q2. Actions β1 and β2 start from q1 and q2
respectively and return to q0 or q′

0 with probability 1
2 .

The definition could be extended with an initial distri-
bution instead of an initial state, but we restrict to this 
one for the sake of simplicity. When Δ(q, α) is defined, 
α is said to be enabled in state q. Intuitively, in an exe-
cution of an MDP, from a given state q, an action α ∈ Act
enabled in q is chosen non-deterministically, and then the 
next label in Σ and the next state are chosen according 
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