Information Processing Letters 114 (2014) 317-321

www.elsevier.com/locate/ipl

Contents lists available at ScienceDirect

Information Processing Letters

Enumerating maximal bicliques in bipartite graphs

with favorable degree sequences

Peter Damaschke *

@ CrossMark

Department of Computer Science and Engineering, Chalmers University, 41296 Goteborg, Sweden

ARTICLE INFO

ABSTRACT

Article history:

Received 18 October 2013

Received in revised form 2 January 2014
Accepted 1 February 2014

Available online 4 February 2014
Communicated by R. Uehara

Keywords:

Analysis of algorithms
Biclique enumeration
Degree sequence
Power law

Hull operator

We propose an output-sensitive algorithm for the enumeration of all maximal bicliques
in a bipartite graph, tailored to the case when the degree distribution in one partite set
is very skewed. We accomplish a worst-case bound better than previously known general
bounds if, e.g., the degree sequence follows a power law.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A bipartite graph H = (X, Y, E) with edges set E has its
edges only between two vertex sets X and Y, but not in-
side these sets. A bipartite graph is complete, or a biclique,
if E consists of all | X|-|Y| possible edges. A biclique within
another bipartite graph is called a maximal biclique if it
is not contained in a larger biclique. Enumeration of the
maximal bicliques of a given biparite graph has important
applications in data analysis, which have been reported at
many places. As the number 8 of maximal bicliques can be
exponential in the graph size, one important type of enu-
meration algorithms is output-sensitive algorithms whose
time bounds are polynomial in the graph size and in the
output size B. A stronger demand is that one may always
want to output a new item, i.e.,, maximal biclique, after
some polynomial delay (in the size of the graph only).
However, in the present paper we are only concerned with
the total running time. If not said otherwise, let n and m

* Tel.: +46 31 772 5405; fax: +46 31 772 3663.
E-mail address: ptr@chalmers.se.

http://dx.doi.org/10.1016/j.ipl.2014.02.001
0020-0190/© 2014 Elsevier B.V. All rights reserved.

denote the number of vertices and edges, respectively, of
the input graph, and let A be the maximal vertex de-
gree.

Let us review known total running times from the lit-
erature about the problem. For general (not only bipar-
tite) graphs, several incomparable time bounds are derived
in [1], in particular, O (n?B2) or alternatively O (n>g). The
latter bound also appears in [2] and is later refined to
O(nmpg) in [3]. This bound, in turn, also comes out in [6]
from a different angle. A weighted and thresholded ver-
sion of the problem is considered in [9] where an O (n?8)
time bound is reported. A unifying view is presented in [4],
however no better time bounds in our direction follow
there. Finally, one of the results in [8] is an 0(A2%g8) time
bound for the case of bipartite graphs. The extended ab-
stract [5] deals with the bipartite case, too, but gives no
explicit time bound.

In the present paper we take advantage of skewed de-
gree distributions in the bipartite graph H = (X, Y, E), re-
sulting in time bounds that can beat the aforementioned
0(A?%B) under some circumstances. More technically, con-
sider the following special case of a sorted degree se-
quence in one partite set X, which goes as 1/j5, that is,

http://dx.doi.org/10.1016/j.ipl.2014.02.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:ptr@chalmers.se
http://dx.doi.org/10.1016/j.ipl.2014.02.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2014.02.001&domain=pdf

318 P. Damaschke / Information Processing Letters 114 (2014) 317-321

the jth highest degree in X is about a 1/j° fraction of
the highest degree. Here s is any constant with 1 <s < 2.
Then we achieve O(Ak%~58) time, where k = |X|. If, fur-
thermore, k*~5 < A, then this is faster than 0(A%8). (We
remark that the algorithm in [8] also outputs a new bi-
clique after a delay of 0(A?) time, whereas we do not aim
for a polynomial delay, and apparently it would be hard to
achieve combined with our result.)

This type of time bounds is our main theoretical con-
tribution. It seems relevant because just such non-uniform
degree distributions appear in practice. We are mainly in-
terested in applications where the vertices in Y represent
many short texts, the vertices in X represent the words in
these text snippets, and xy € E is an edge, if word x oc-
curs (at least once) in text y. The texts can, e.g., be tweets,
short news about events, comments in a forum, or reviews
of hotels, restaurants, of products or artistic works. Combi-
nations of words that occur frequently indicate topics and
can serve as a basis for, e.g., clustering, opinion mining, or
automatic summarization.

Now, the point is that rather few words appear very
frequently (and these are not only stop words but also
characteristic terms from the discussed domain, or evalu-
ating phrases), whereas others are more occasional. There
is empirical evidence [7] that word frequencies in ran-
dom texts follow Zipfs law, i.e., they are proportional to
1/j5 with s close to 1. In text corpora focused on one
theme one can expect more “hyper-Zipfian” distributions
with s > 1, since now only a limited set of words is very
frequent. Also k25 < A is easily fulfilled, as A is high
(frequent words in many texts), whereas the number k
of different words comes with an exponent below 1. In
a preprocessing phase we can even omit rare words that
are of no interest, and thus reduce k right from the begin-
ning.

We remark that the degree sequence does not have to
obey exactly some power law, and the algorithm itself does
not depend on that. We only discussed this function for
its mathematical simplicity, in order to get some “crisp”
specific worst-case bound. Rather, the more general, some-
what informal conclusion is that we can enumerate the
maximal bicliques faster than what earlier time bounds in-
dicate, whenever the degree sequence is “more skewed”
than a Zipf's law sequence with s =1.

Our algorithm, while taking the degree sequence into
account, still follows natural ideas and should also be easy
to implement. Despite earlier works we present the al-
gorithm from scratch because, of course, the details are
important for the analysis. We also add some more tricks
that do not further help the worst-case bound but are ben-
eficial for certain instances.

2. Prefix maxima in a sequence of sets

The enumeration algorithm in Section 3 will have to
deal with a certain sequence of sets of vertices and, very
roughly speaking, recognize which of them are already
subsets of other sets early in the sequence. (See Defi-
nition 1 below for the precise statement.) This will be
needed to avoid returning non-maximal bicliques. In this

section we solve this task separately by a routine called
PrefMax, such that we can later use this routine and focus
on the main algorithm.

As a notational remark, C denotes the proper subset
relation, whereas C also allows for equality of sets. Two
sets not in C relation are called incomparable.

Definition 1. Let Sq,...,S; be a sequence of finite sets
which are not necessarily different, that is, S; = S; for i # j
is allowed. We call S; with j < p a prefix maximum in
[1..p] if no S;, i < p, satisfies S; C S;, and no S;, i < j,
satisfies S; = Sj. We define p(j) to be the largest p such
that S; is a prefix maximum in [1..p]. If S; is not a prefix
maximum in any prefix, we define p(j) :=0.

The following algorithm PrefMax computes all p(j) by
scanning the sequence St, ..., Sk. The algorithm temporar-
ily marks and unmarks some sets (actually, their indices),
and the sets being still marked in the end are the prefix
maxima, see Lemma 2.

PrefMax
for j=1,...,k do
begin
mark j;
for all marked i < j do
case ‘S; C S;": unmark i
case ‘S; € S;": p(i) := j; unmark j;
case ‘S, S; incomparable’: p(i) := j;
if j marked then p(j):=j else p(j) :=0;
end

Lemma 2. After the jth iteration of the outer loop in PrefMax,
the marked indices are exactly those of the prefix maxima in
[1..7].

This is easy to see by induction on j, from the defini-
tion of prefix maxima and the rules of the procedure. Now
the correctness of PrefMax follows from Lemma 2, as the
p(j) are updated accordingly.

Next we extend the use of PrefMax a bit. Suppose that,
for some fixed element s, all occurrences of s are removed
from the S;. (We may also remove several fixed elements
at once.) While existing inclusion relations S; C S; are ob-
viously preserved by that, it may happen that some incom-
parable S;, S; become comparable by removals. We wish
to recompute the p(j) without running algorithm PrefMax
from scratch. In fact, we do apply PrefMax, but in general
with fewer comparisons: Note that, since existing inclu-
sions are preserved by element removals, the p(j) can
never grow. But some p; may get smaller, because more
sets S; may now satisfy S; C S;. In particular, we know
immediately that every p(j) = 0 remains zero. Thus we
can skip indices j with p(j) =0 in the outer loop of Pref-
Max. Moreover, since such j got unmarked, no indices i
with p(i) =0 need to be considered in the inner loop ei-
ther. That is, we can ignore such indices altogether and
run PrefMax on those indices, in the given order, where
the p(j) are still positive.

Download English Version:

hitps://daneshyari.com/en/article/10331124

Download Persian Version:

https://daneshyari.com/article/10331124

Daneshyari.com

https://daneshyari.com/en/article/10331124
https://daneshyari.com/article/10331124
https://daneshyari.com

