
Information Processing Letters 94 (2005) 231–240

www.elsevier.com/locate/ipl

Closure properties and decision problems of dag automata

Siva Anantharamana,∗, Paliath Narendranb, Michael Rusinowitchc

a LIFO, Université d’Orléans, France
b University at Albany, SUNY, USA

c LORIA – Nancy, France

Received 27 July 2004; received in revised form 5 November 2004

Available online 16 March 2005

Communicated by D. Basin

Abstract

Tree automata are widely used in various contexts. They are closed under boolean operations and their emptiness problem
is decidable in polynomial time. Dag automata are natural extensions of tree automata, operating on dags instead of on trees;
they can also be used for solving problems. Our purpose in this paper is to show that algebraically they behave differently: the
class of dag automata is not closed under complementation, dag automata are not determinizable, their membership problem
is NP-complete, the universality problem is undecidable, and the emptiness problem is NP-complete even for deterministic
labeled dag automata.
 2005 Elsevier B.V. All rights reserved.

Keywords: Tree automata; Determinism; Complementation; Universality problem; Emptiness problem; Formal languages

1. Introduction

The expressive power of tree automata has proved
to be very useful in several contexts, such as rewrit-
ing (e.g., [8]), the analysis of XML documents (e.g.,
[13]), and formal program or protocol verification
techniques based on set constraints [1,10]. They have
also been employed in solving unification problems

* Corresponding author.
E-mail addresses: siva@lifo.univ-orleans.fr

(S. Anantharaman), dran@cs.albany.edu (P. Narendran),
rusi@loria.fr (M. Rusinowitch).

over theories extending ACUI (AC with Unit element
plus Idempotence), see for instance [4,2]. Dag au-
tomata were first introduced as extensions of tree au-
tomata in [6]; in brief, a dag automaton is a bottom-
up tree automaton which runs on dags, not on trees.
A labeled dag automaton is a dag automaton where
the transitions are labeled; it runs on dags with la-
beled nodes; the runs have then to use transitions
whose labels tally with those at the nodes reached.
It was shown in [2] that unification modulo ACUID
(the theory obtained by adjoining a binary operator as-
sumed two-sided distributive over a basic ACUI sym-
bol) is decidable with a DEXPTIME lower bound and

0020-0190/$ – see front matter 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2005.02.004



232 S. Anantharaman et al. / Information Processing Letters 94 (2005) 231–240

a NEXPTIME upper bound complexity; this was done
by formulating the problem as one of emptiness of a
deterministic labeled dag automaton (LDA) that can
be constructed naturally from the given unification
problem, in exponential time.

Thus, if emptiness ofdeterministic LDAs could be
shown to be decidable in polynomial time, one could
have deduced that ACUID-unification is DEXPTIME-
complete. But we shall be showing below that decid-
ing emptiness is NP-complete for deterministic LDAs.
We also establish that:

(i) the class of dag automata is not stable under com-
plementation,

(ii) the membership problem is NP-hard for nonde-
terministic dag automata, and

(iii) universality is undecidable for dag automata.

The results on emptiness and membership are ob-
tained via reduction from boolean satisfiability, while
that on universality is obtained via reduction from the
Minsky two-counter machine problem. These results
illustrate how different the algebraic behavior of dag
automata can be from that of tree automata. Observe,
in this connection, that for nondeterministic tree au-
tomata, the uniform membership problem is decidable
in polynomial time, and universality is known to be
EXPTIME-complete, cf. TATA ([7], Section 1.7, re-
spectively, Theorems 10 and 14).

Dag automata were studied in detail in [6]; the
problem of their emptiness was shown there to be NP-
complete, and their membership problem was shown
to be in NP. The stability under complementation of
the class of dag automata was raised as an open prob-
lem, closely linked with that of their determinization.
We are thankful to the anonymous referees for having
pointed out that the proof of our Theorem 1 (Section 3)
settles these questions negatively.

2. Dag automata with or without labels

We first recall the notions of term-dags and of
dag automata as developed in [6]. Aterm-dag over a
ranked alphabetΣ is a rooted dag where each node
has a symbol fromΣ such that:

(i) the outdegree of the node is the same as the rank
of the symbol,

(ii) edges going out of a node are ordered, and
(iii) no two distinct subgraphs are isomorphic.

Every node represents a unique term in a term-dag, so
we often treat “node” and “term” as synonymous on a
term-dag.

Definition 1. A term-dag automaton (or dag automa-
ton, DA, for short) over a ranked alphabetΣ is a tu-
ple (Σ,Q,F,∆), whereQ is a finite nonempty set of
states,F ⊆ Q is the set of final (or accepting) states,
and∆ is a set of transition rules of the form:f (q1, q2,

. . . , qn) → q, wheref ∈ Σ is of arity (rank)n, and
theq1, . . . , qn, q are inQ.

Note that the dag automata are defined in a bottom-
up style. Arun r of a DA A = (Σ,Q,F,∆) on a term-
dagt is a mapping from the set of nodes oft to the set
of statesQ that respects the transition relation∆; i.e.,
for every nodeu, if the symbol atu is f of arity k,
thenf (r(u1), . . . , r(uk)) → r(u) must be a transition
in ∆, whereu1, . . . , uk are the successor-nodes ofu

given in order. A runr is accepting on t if and only
if r(t) ∈ F , i.e., it maps the root node to an accepting
state. A term-dagt is accepted by a DA iff there is an
accepting run ont . The language of a DA is the set of
all term-dags that it accepts. It has been proved in [6],
that deciding the emptiness of a DAis in NP.

A labeled term-dag, or lt-dag, for short, is a term-
dag equipped additionally with a mapping from the
nodes of the dag to a given set of labelsE. The moti-
vation for adding labels is that, in the case where the
labels are boolean, i.e., whenE = {0,1}, a labeled
term-dag can be used to specify finite sets of terms.
For instance, the labeled term-dag in Fig. 1 represents
the set{a,g(g(a, a), b)} of terms. More generally, if
the labels are boolean vectors of lengthm, then each
labeled dag corresponds to anm-tuple of finite sets of
terms.

Definition 2. A labeled dag automaton (or LDA,
for short) over a ranked alphabetΣ is a quintuple
(Σ,Q,F,E,∆), whereQ is a finite nonempty set of
states,F ⊆ Q is the set of final (or accepting) states,
E is a finite set oflabels, and the transition relation∆
consists oflabeled rewrite rules of the formf (q1, . . . ,



Download English Version:

https://daneshyari.com/en/article/10331366

Download Persian Version:

https://daneshyari.com/article/10331366

Daneshyari.com

https://daneshyari.com/en/article/10331366
https://daneshyari.com/article/10331366
https://daneshyari.com

