
Information Processing Letters 94 (2005) 71–77

www.elsevier.com/locate/ipl

Event Trace Independence of active behavior✩

Angela Bonifatia,∗, Stefano Cerib,1, Stefano Paraboschic

a Icar CNR, Via P. Bucci 41C, I-87036 Rende, Italy
b DEI, Politecnico di Milano, P.za L. da Vinci 32, I-20133 Milano, Italy
c DIGI, Università di Bergamo, Viale Marconi 5, I-24044 Dalmine, Italy

Received 12 April 2004; received in revised form 10 December 2004

Available online 16 January 2005

Communicated by S.E. Hambrusch

Abstract

We present theEvent Trace Independence(ETI), a novel property of active rules exhibiting a behavior independent of the
specific event sequence that had caused a state transition. When employed in a distributed setting, this property supersedes
the classical property of confluence, which is not sufficient herein. We show that ETI is in general undecidable and provide a
sufficient condition, calledinvertibility, which offers a practical way to demonstrate ETI.
 2004 Elsevier B.V. All rights reserved.

Keywords:Rule analysis; Active databases; Rule termination; Events; Databases

1. Introduction

Event Trace Independence (ETI) is a novel property
that characterizes active databases. The property holds
for a given rule system and rule sets when, for any ar-
bitrary state change from an initial to a final state, the
behavior of the system is independent of the partic-

✩ Research presented in this paper is supported by Esprit project
WebSI.

* Corresponding author.
E-mail addresses:bonifati@icar.cnr.it (A. Bonifati),

ceri@elet.polimi.it (S. Ceri), parabosc@unibg.it (S. Paraboschi).
URL: http://www.icar.cnr.it/angela.

1 Work is partially supported by CESTIA-CNR (Milano).

ular state sequence that produced the final state after
rules activation. This property is particularly relevant
in the case of asynchronously distributed active sys-
tems whenever the changes on a site are gathered in a
trace, which is forwarded to another site after the oc-
currence of the changes. Changes occurred on a site
are collected in anevent traceand exported to another
site, on which they may fire a set of actions. The action
is a genericstored procedure, i.e., code that is located
on a site and executed as response to a special event.
These systems include (but are not limited to) classical
distributed databases, data warehouses, replicated sys-
tems, mediators, caching systems, recent P2P architec-
tures and the Web. This problem is also relevant in the
context of recent technology developed for XML. Sig-

0020-0190/$ – see front matter 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2004.12.014



72 A. Bonifati et al. / Information Processing Letters 94 (2005) 71–77

nificant examples, such as Apache Jelly, Macromedia
DreamWeaver, JSP.Net, basically embed method calls
inside the documents and make these calls activated
upon the click of a mouse or the occurrence of a par-
ticular event.

Event traces as described above can be captured at
run-time, packed and then shipped to another machine.
Or, alternatively, they can be generated by comparing
two different versions of the same data [1]. Indeed, be-
sides containing the sequence of occurred events, each
event trace also describes the transition between two
states of the system. There are usually different event
traces describing the same state transition. In a distrib-
uted asynchronous context, such as that of the systems
described above, event traces may be used liberally,
e.g., after merging with other traces. Thus, one would
like to guarantee that the active behavior triggered
elsewhereby those event traces is independent of the
trace, but only dependent on the occurred state transi-
tion. This is different from what was studied in central-
ized active databases [2–6], where the event trace has
usually been fixed and known in advance. Two prop-
erties ofterminationandconfluencehave been defined
for sets of database rules. Termination guarantees that
any transaction execution associated with rule execu-
tion is completed, whereas confluence guarantees that
such completion produces the same final state.

However, in a distributed context working asyn-
chronously, such as that of the Web or in any other of
the above settings, termination and confluence are no
longer sufficient to explain the active behavior. When
events may have occurred outside the scope of the sys-
tem or may not have been traced with the same tool,
the behavior of rules in the current site still needs to be
guaranteed as safe.

In the remainder, we assume reactive behaviors
produced by active rules and we adopt the relational
model as the underlying data model. Nevertheless, the
results can be applied to any different event-based re-
active processing among those discussed.

Statement of the problem.The property ofevent
trace independencecomplements the notion of conflu-
ence in all the situations when transaction execution
is not known in terms of the sequence of the atomic
events, but only in terms of the initial state and the final
state, produced by the sequence. To better appreciate
the difference between confluence and event trace in-

Fig. 1. An overview of confluent and ETI rule sets.

dependence, consider Fig. 1. The (bold) segments (la-
beled withET) between the database stateDB0 and
the stateDBi represent the event traces, while those
(labeled withRE) between the stateDBi and each fi-
nal database stateDBf i represent the rule executions
triggered by the events of the traces. Note that each
point in the figure represents a database state, that, in
case of the event traces, is due to a user update and, in
case of rule executions, is caused by a rule activation.

Observe that in classical confluence, for a given
event trace, e.g.,ET1, what is required by the prop-
erty is that the rule executions raised by this event
traceET1 (in the figure,RE′

1, RE′′
1 andRE′′′

1 , respec-
tively) should converge to the same final stateDBf 1 =
DBf 2 = DBf 3 (enclosed in the small oval). Instead, in
case of the ETI property, for each event trace between
DB0 andDBi (in the figure only two of them are illus-
trated,ET1 andET2), different rule executions can be
raised (the previous rule executions forET1, andRE′

2,
RE′′

2 for ET2). What is demanded by ETI is a stronger
convergence, i.e., the convergence of all the final states
into a unique one (DBf 1 = DBf 2 = DBf 3 ≡ DBf 4 =
DBf 5, enclosed in the big oval).

Contributions. Event trace independence is a diffi-
cult problem, because in addition to confluence, we
must guarantee the uniqueness of the final state while
enumerating all the possible event traces occurring be-
tween two states. We show that ETI is undecidable.
Therefore, we devise a sufficient condition, calledrule
invertibility, which guarantees ETI. This is similar to
the use ofrule commutativityto guarantee conflu-
ence [2]. However, commutativity holds for a fixed
event trace and is no longer applicable here. More-



Download English Version:

https://daneshyari.com/en/article/10331400

Download Persian Version:

https://daneshyari.com/article/10331400

Daneshyari.com

https://daneshyari.com/en/article/10331400
https://daneshyari.com/article/10331400
https://daneshyari.com

