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Abstract

Herman’s Ring[Inform. Process. Lett. 35 (1990) 63; http://www.cs.uiowa.edu/ftp/selfstab/H90.ps.gz] is an algorithm for self-
stabilization ofN identical processors connected uni-directionally in a synchronous ring; in its original form it has been shown
to achieve stabilization, with probability one, in expected steps O(N2 logN). We give an elementary proof that the original
algorithm is in fact O(N2); and for the special case of three tokens initially we give an exact (quadratic) solution of 4abc/N ,
wherea, b, c are the tokens’ initial separations. Thus the algorithm overall has worst-case expected running time of�(N2).
Although we use only simple matrix algebra in the proof, the approach was suggested by the general notions ofabstraction,
nondeterminismandprobabilistic variants[A. McIver, C. Morgan, Refinement and Proof for Probabilistic Systems, Technical
Monographs in Computer Science, Springer-Verlag, New York, 2004]. It is hoped they could also be useful for other, similar
problems. We conclude with an open problem concerning the worst-case analysis.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Herman’s Ring [1] comprises an odd number
N � 3 of processors connected unidirectionally in a
ring; at any moment each processor can hold either
zero or one tokens. In each (synchronous) step of the
stabilization algorithm, every token-holding proces-
sor decides independently with an unbiased coin-flip
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whether tokeepits token (probability 1/2) or topass
its token (also probability 1/2) to the next processor
downstream. If akeepingprocessor receives a token
from itspassingimmediately-upstream neighbor, then
the two tokens are annihilated.

Herman showed [1] that, from any initial state in
which the number of tokens is odd, the system as a
whole will with probability one eventually reach asta-
ble state in which there is only one token; he has also
shown that the expected number of synchronous steps
until stabilization is O(N2 logN).
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A number of researchers have described variations
and improvements on the original algorithm, in some
cases reducing the (time) complexity to O(N2) [3].

Here we show that Herman’soriginal algorithm is
O(N2);1 and by giving an exact solution for the ini-
tial case of three tokens we show that in fact in the
worst case it is�(N2). The proof is given in elemen-
tary terms; the more general techniques that led to it
are discussed in the conclusion.

2. Characterization of expected steps to
stabilization

Let R (for ring) be the finite set of all ring configu-
rations in which the number of tokens is odd andmore
than one. We write two-dimensional matrices, such
as (Markov) transition matrices overR, with a double
underline; column matrices, such as random variables
overR, have a single underline; and if a matrix or vec-
tor has entries all the same scalarc then we write it [c]
with the appropriate number of underlines.

Let R be the (#R)-by-(#R) transition matrix of
probabilistic transitions determined by Herman’s al-
gorithm. It is sub-stochastic—its rows sum to no
more than one—because only the “unstable” not-yet-
terminated (i.e., more than one token) configurations
are included inR.

The probability ofnot stabilizing on the very next
step isR· [1] (a column vector indexed by initial state);

and thus in generalRk · [1] gives the probabilities that
stabilization will not occur withink steps. From el-
ementary probability theory [5], theexpected time to
stabilizationis then a column vectore = ∑∞

k=0 Rk · [1]
where this summation exists, provided stabilization
occurs with probability one: each element of the vec-
tor gives the expected time from that initial state.

Where the summation does exist, matrix algebra
shows that in fact we havee = [1]+R· e. We put these
observations in a lemma:

Lemma 1. If from every initial configurationr in R
the expected stepse to stabilization is finite, then it
satisfies

R· e = e − [1]. (1)

1 Herman reports this result also [1], and notes that Dolev et al.
have put it in the form of a game [4].

Conversely, if we have somee that satisfies(1)
uniquely then, provided we have established(by some
other means) that the expected time to stabilization is
everywhere finite, we will know it is given by thate.

3. Expected steps to stabilization is finite for
Herman’s Ring

We begin by showing that the ring’s stabilization
occurs “quickly” in the sense that the probability of
not yet having stabilized decreases exponentially. We
assume throughout that the ring size is fixed atN .

Lemma 2. There are constantsc � 0 and 0 � m < 1
such that from any initial configurationr of the ring
the probabilityPk,r that the ring will not yet have sta-
bilized, afterk steps, is no more thancmk .

Proof. Suppose at first that the number of steps
is (N − 1)b for some b, i.e., that it comprisesb
“blocks” of N −1 steps each; select some fixed proces-
sor F . In each block of steps the chance of stabiliza-
tion is no less thanε = (1/2N)N−1 > 0, since that is a
lower bound for the probability that in every one of the
N −1 steps of the block only the nearest-downstream-
to-F token is passed, while all others are kept.

The probability that stabilization does not occur in
anyof theb blocks is thus no more than (1− ε)b, that
is P(N−1)b,r � (1− ε)b. Writing �· � for thefloor func-
tion, we therefore have for anyk that

Pk,r � P(N−1)�k/(N−1)�,r
� (1− ε)�k/(N−1)�

� cmk,

provided we setc = 1/(1−ε) andm = (1−ε)1/(N−1).�
This quick stabilization gives us our finiteness re-

sult directly.

Lemma 3. Stabilization occurs within a finite expected
number of steps.

Proof. Because ther th entry of column vectorRk· [1]
is just Pk,r , we have that Lemma 2 bounds∑∞

k=0 Rk· [1] by
∑∞

k=0 [cmk], which converges. �
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