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Abstract

We present some simple but useful properties of factor oracles, and propose fast algorithms for indexed full-text search and
finding repeated substrings. Some experiments are given to demonstrate the performance of our algorithms.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Factor oracles [1] are deterministic acyclic au-
tomata built from a given text. Factor oracles are more
space economical and easy to implement than simi-
lar machineries such as suffix-trees or suffix-automata.
Unfortunately, however, unlike a suffix-tree or a suffix-
automaton, which precisely accepts only substrings, of
an input text, a factor oracle may accept strings not in
the text. Thus, in some situations, factor oracles can-
not be used directly as an index for full-text search.
Here we show some simple properties, which enable
us to use a factor oracle as an index of a given text,
avoiding to accept patters not in the text. Also for the
application of using factor oracles to find repeats (see,
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e.g., [4]), we derive some property and propose an im-
provement of existing algorithms [3,5].

Before starting our discussion, we give here nec-
essary notations, notions, and properties on factor or-
acles, most of which have been introduced/proved in
[2]. We ask the reader to refer it for the detail. We will
use standard notions and notations on strings such as
|u|, the length of a stringu, etc. For any stringsu and
v, we writeu � v if u is asuffix of v, and writeu � v

if u � v andu �= v.
A factor oracle is constructed from a giventext

string over a finite alphabetΣ . Throughout this note,
we usep andm to denote a given text and its length
|p|. A substring (or, a factor) of p is a stringw such
that p = uwv for someu,v ∈ Σ∗; in particular, for
any i andj , 1� i � j � m, we usep[i..j ] to denote
thesubstring of p appearing from theith character to
thej th character. We say thatw appears at position i

0020-0190/$ – see front matter 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2004.11.011



270 R. Kato, O. Watanabe / Information Processing Letters 93 (2005) 269–274

Fig. 1. Oracle(“abbbaab”). Internal transitions are edges on a
straight line (omitting arrows). Solid arcs left to right on the upper
side are external transitions. Dashed arcs right to left on the down
side are suffix links.

if w is a suffix ofp[1..i], andi is called anend po-
sition of the occurrence ofw. For any stringw ∈ Σ∗
and integeri, 1� i � m, define

endpos(w) = {
i | w = p[i − |w| + 1..i]},

and

repet(i) = the longest suffix ofp[1..i]
that occurs more than once inp[1..i].

That is,endpos(w) is the set of end positions of the
occurrences ofw, andrepet(i) is the longest repeated
suffix of p[1..i]. Substring search or full-text search is
to compute the smallest/all elements ofendpos(w) for
a givenw. Repeat search is to computerepet(i) and
its end position beforei, for all i, 1� i � n. We will
propose algorithms for these tasks.

A factor oracle Oracle(p) (for a given textp) is a
deterministic acyclic automaton consisting ofm + 1
states,m internal transitions, and at mostm − 1 exter-
nal transitions; see Fig. 1 for an example. Aninternal
transition from statei to statei + 1 is a transition that
occurs at statei when readingp[i], the ith charac-
ter of p. On the other hand, for any statei and any
σ ∈ Σ , an external transition is defined as follows:
Definemin(i) to be the shortest string that reaches to
i from state 0 by internal and (so far defined) external
transitions. Then an external transition fromi to j via
σ is defined ifj is the smallest index such thatmin(i)σ

appears atj , i.e., min(i)σ is a suffix of p[1..j ]; the
transition is undefined if no suchj exists. In the fac-
tor oracleOracle(p), state 0 is the initial state and all
states are accepting states. Thus, all strings reaching
to some state from state 0 are accepted byOracle(p).
Note thatmin(i) is the shortest string that is accepted
at statei.

Below we state some of the basic properties of fac-
tor oracles from [2] that will be used in our discussion.

Lemma 1. For any substring w of p, w is accepted by
Oracle(p). Indeed, it is accepted at some i such that
i � j , for all j ∈ endpos(w).

Lemma 2. For any i , min(i) appears at i; indeed, i is
the smallest element of endpos(min(i)).

Lemma 3. For any i , any string accepted at i has
min(i) as a suffix. On the other hand, if Oracle(p)

accepts some string with min(i) as a suffix, then the
string must be accepted at j such that j � i .

2. Exact recognition using factor oracles

Lemma 1 guarantees that any string rejected by fac-
tor oracleOracle(p) is not a substring ofp. On the
other hand, there is a case thatOracle(p) accepts a
string not appearing inp. Here we show some sim-
ple properties, with which we can check efficiently
whether an accepted string indeed appears as a sub-
string. We will make use of “suffix link” that has
been introduced [1] to construct factor oracles effi-
ciently. Note that it has been shown, see, e.g., [2], that
Oracle(p) including its suffix links can be constructed
from p in time O(|p|).

For any statei > 0 of Oracle(p), its suffix link S(i)

is i ′, wherei ′ is the state that stringrepet(i) is accepted
at; see Fig. 1 for an example. We leaveS(0) undefined.
By definition, for anyi > 0, S(i) is uniquely deter-
mined; it is easy to see (formally from Lemma 1) that
S(i) < i for any statei > 0. Then from any statei > 0,
by following the suffix links, we eventually reach to
the state 0; that is,

i > S(i) > S
(
S(i)

)
> · · · > S

(· · ·S(i) · · ·) = 0.

We call this sequence of states asuffix path, and define
SP(i) to be the set of states on the suffix path fromi.

The following property, though natural and in fact
easy to obtain, will be useful for our analysis.

Lemma 4. For any i , repet(S(i)) � min(S(i)) �
repet(i) � min(i).

Proof. Note that bothrepet(i) andmin(i) appear ati;
min(i) appears for the first time (from the left) ati (by
Lemma 2), whereasrepet(i) must have appeared be-
fore i (by definition). Hence, it cannot be the case that
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