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Finding a longest nonnegative path in a constant degree tree
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Abstract

A longest nonnegative path in an edge-weighted tree is a path such that the sum of edge weights on it is nonnegative and
the number of edges on it is as large as possible. In this paper we show that if a tree has a constant degree, then its longest
nonnegative path can be found in O(n logn) time, wheren is the number of nodes. Previously known algorithms take O(n log2 n)

time.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Let A = 〈a1, . . . , an〉 be an array of real numbers.
For any 1� i � j � n, 〈ai, . . . , aj 〉 is called asubar-
ray of A. Its length is j − i + 1, itssum ai + · · · + aj ,

and itsaverage
ai+···+aj

j−i+1 . Given a threshold valueθ ,
the problem of finding a longest subarray ofA with its
average at leastθ has important applications in com-
putational biology and bioinformatics, e.g., see [1,6].

The problem can be explained in another way as
follows: As the averageai+···+aj

j−i+1 � θ , this can be writ-
ten as(ai − θ)+· · ·+ (aj − θ) � 0. From this, finding
a longest subarray ofA whose average is at leastθ
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now becomes finding a longest subarray ofA′ whose
sum is nonnegative, whereA′ = (a1 − θ, . . . , an − θ).
Finding a longest nonnegative subarray can be accom-
plished in O(n) time [1,6].

A generalization of this in a tree is following: A tree
T = (V ,E) consists of a setV of nodes and a set
E of edges. Each edgee ∈ E is associated with a
weight,w(e), which is a (positive, negative, or zero)
real number. There exists a unique pathP between
two different nodes in a tree. Thelength of P is the
number of edges inP , and its weight, denoted by
w(P), is the sum of the weights of edges inP . That
is, w(P) = ∑

e∈P w(e). P is called nonnegative if
w(P) � 0. Finding a longest nonnegative path in a tree
can be done in O(n log2 n) time wheren = |V | by the
algorithm in [7].
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The degree of a node is the number of edges in-
cident on the node, and thedegree of a tree is the
maximum among the degrees of the nodes in it. The al-
gorithm of [7] takes O(n log2 n) time regardless of the
degree of trees. We are interested in whether it is pos-
sible to reduce time complexity if a tree has a constant
degree. We answer the question positively by giving
an algorithm with running time O(n logn).

Our algorithm (with a slight modification) can be
applied to any tree with a constant degree at least three;
however, for ease of presentation, our attention will be
restricted to trees of degree three.

Note 1. Wu et al. [7] developed an algorithm for the
problem of finding in a tree alength-constrained heav-
iest path, i.e., a maximum-weight path whose length is
at most some predefined threshold. In [7], each edge is
associated with two values,length andweight, both of
which are real numbers (negatives are allowed). The
length (weight) of a path is the sum of its edge lengths
(weights). Their algorithm is a divide-and-conquer al-
gorithm: split a tree into (at most) three subtrees, re-
cursively compute subsolutions, and combine them to
obtain the solution. Thecombine step requires a sort-
ing of O(n) real numbers, which correspond to lengths
of paths, taking O(n logn) time. Therefore, the time
complexity of the whole algorithm is O(n log2 n). If
the sorting in the combine step can be done in linear
time, the time complexity will reduce to O(n logn).
They actually claimed that if theedge lengths are all
integers in the range[1..O(n)], integer sorting algo-
rithms, e.g., counting sort [2], can be used and the time
complexity will be O(n logn). Even though the edge
lengths are all O(n), some paths may have lengths be-
yond O(n). So, the sorting cannot be accomplished in
O(n) time for some inputs.

Note 2. The algorithm in [7] finds a length-constrained
heaviest path, but it can find aweight-constrained
longest path by switching the roles of lengths and
weights. A longest nonnegative path, which is the fo-
cus of our algorithm, is a weight-constrained longest
path as we are trying to find a longest path whose
weight � 0. In our algorithm each edge is of length
one. The algorithm in [7] cannot find a longest non-
negative path in O(n logn) time, as pointed in Note 1,
even if the input tree has a constant degree. Notice
that since the roles of lengths and weights have been

switched, the sorting in the combine step is done with
respect to path weights, not path lengths.

2. Structure of algorithm

Our algorithm is a recursive one based on a divide-
and-conquer method. Before explaining the algorithm
we need an important definition.

T is a tree of degree three. If a nodev and its edges
are removed fromT , of degree three, thenT is par-
titioned into (at most) three subtreesT1, T2 and T3,
depending on the degree ofv. Nodev is called acen-
troid of T if |Ti | � |T |/2 for i = 1,2,3, where|T |
denotes the number of nodes inT . A tree has either
one or two centroids; and if there are two, they must
be adjacent [5]. If a tree has two centroids, one of them
is chosen asthe centroid.

The centroid ofT can be found in O(|T |) time [3,
4]. A well-known method starts with convertingT into
a (rooted) binary tree by choosing a node of degree one
as the root. LetT (v) for nodev be the subtree consist-
ing of v and all of its descendants. Compute|T (v)| for
every nodev of T by traversing (the binary tree ver-
sion of)T in postorder. Ifv is a leaf, then|T (v)| = 1;
otherwise,|T (v)| = 1 + the number of nodes in the
left and right subtrees ofv. During this procedure, the
first nodev that satisfies|T (v)| � |T |/2 is the centroid
of T .

Our algorithm, as mentioned before, runs in a
divide-and-conquer fashion:

Input: A treeT of degree three.
Output: The length of the longest nonnegative path in

T (the path itself can be found by slightly modifying
the algorithm).

[Divide] If T has only one node, then returns 0. Oth-
erwise, find the centroidc of T , and removec and
its edges fromT . At most three subtreesT1, T2 and
T3 are left. Depending on the degree ofc, T2, T3 or
both may be empty.

[Conquer] Recursively find the length, denoted byL1,
of the longest nonnegative path inT1. In similar
ways, recursively findL2 andL3 in T2 andT3, re-
spectively.

[Combine] Find the length,Lc , of the longest non-
negative path that is contained inT and passing
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