
Information Processing Letters 93 (2005) 281–288

www.elsevier.com/locate/ipl

Efficient weakest preconditions

K. Rustan M. Leino

Microsoft Research, Redmond, WA, USA

Received 17 November 2003; received in revised form 3 November 2004

Communicated by F.B. Schneider

In memory of Edsger W. Dijkstra

Abstract

Desired computer-program properties can be described by logical formulas called verification conditions. Different
mathematically-equivalent forms of these verification conditions can have a great impact on the performance of an automatic
theorem prover that tries to discharge them. This paper presents a simple weakest-precondition understanding of the ESC/Java
technique for generating verification conditions. This new understanding of the technique spotlights the program property that
makes the technique work.
 2004 Published by Elsevier B.V.

Keywords: Program correctness; Formal semantics; Automatic theorem proving

0. Introduction

Various computer-program checking tools and verification tools generateverification conditions, logical formu-
las whose validity reflect the correctness of the programunder analysis. Each verification condition is then passed
to a mechanical theorem prover or some suite of decision procedures. The Extended Static Checkers for Modula-3
and for Java are examples of program checkers built around this architecture [5,8,10].

There are many mathematically equivalent ways to formulate a verification condition, and which formulation
one uses can have a dramatic impact on the performance of the program-checking system. The ESC/Modula-3
and ESC/Java projects have explored techniques for formulating verification conditions that substantially improve
the way they are handled by the underlying automatic theorem prover. The variation of the technique used in
ESC/Java is described by Flanagan and Saxe [9]. Their paper compares the ESC/Java technique with the well-
known verification-condition technique ofweakest preconditions [6]. In this paper, I show that the ESC/Java

E-mail address: leino@microsoft.com (K.R.M. Leino).

0020-0190/$ – see front matter 2004 Published by Elsevier B.V.
doi:10.1016/j.ipl.2004.10.015



282 K.R.M. Leino / Information Processing Letters 93 (2005) 281–288

techniqueis in fact the technique of weakest preconditions with the additional use of a certain weakest-precondition
property that holds only for a restricted class of programs.

1. Weakest preconditions

Let’s start by reviewing weakest preconditions and the problem with their traditional application. We consider
a simple language like the following, which is representative of the intermediate language used in ESC/Java [11]:

S,T ::= Id := Expr
| assert Expr
| assume Expr
| S ; T

| S T

The assignment statementx := E sets program variablex to the value ofE. The assert and assume statements
are no-ops if the given expression evaluates totrue. If the expression evaluates tofalse, the assert statement is an
irrevocable error (the executiongoes wrong) and the assume statement is a partial command that does not start
(the executionblocks) [12]. Every execution in our simple language either blocks, goes wrong, or terminates. The
statementS ; T is the sequential composition ofS andT , whereT is executed only ifS terminates, andS T

is the arbitrary choice betweenS andT . The statements of the simple language are rich enough to encode loops
declared with loop invariants and procedure calls declared with procedure specifications (cf. [11,1]). For this paper,
it suffices to know that a common program statement like

if B then S else T end

is encoded as the choice statement

(assume B ; S) (assume ¬B ; T )

in the simple language.
The weakest conservative precondition of a statementS with respect to a predicateQ on the post-state ofS,

denotedwp(S,Q), is a predicate on the pre-state ofS, characterizing all pre-states from which every non-blocking
execution ofS does not go wrong and terminates in a state satisfyingQ. Similarly, theweakest liberal precondition
of S with respect toQ, denotedwlp(S,Q), characterizes the pre-states from which every non-blocking execution
of S either goes wrong or terminates in a state satisfyingQ. The connection betweenwp andwlp is described by
the following equation, which holds for every statementS [6]:

(∀Q • wp(S,Q) ≡ wp(S, true) ∧ wlp(S,Q)). (0)

The semantics of the statements in the simple language are defined by the following weakest preconditions, for any
predicateQ [6,12]:

Stmt wp(Stmt,Q) wlp(Stmt,Q)

x := E Q[x := E] Q[x := E]
assert E E ∧ Q E ⇒ Q

assume E E ⇒ Q E ⇒ Q

S ; T wp(S,wp(T ,Q)) wlp(S,wlp(T ,Q))

S T wp(S,Q) ∧ wp(T ,Q) wlp(S,Q) ∧ wlp(T ,Q)

(1)

whereQ[x := E] says aboutE whatQ says aboutx, that is:

Q[x := E] = let x = E in Q end



Download	English	Version:

https://daneshyari.com/en/article/10331424

Download	Persian	Version:

https://daneshyari.com/article/10331424

Daneshyari.com

https://daneshyari.com/en/article/10331424
https://daneshyari.com/article/10331424
https://daneshyari.com/

