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Exchanged hypercubes (Loh et al., 2005 [13]) are spanning subgraphs of hypercubes with
about one half of their edges but still with many desirable properties of hypercubes. Lower
and upper bounds on the domination number of exchanged hypercubes are proved which
in particular imply that γ (EH(2, t)) = 2t+1 holds for any t � 2. Using Hamming codes we

also prove that γ (EH(s,2k − 1)) � (2s − 2k)γ (Q 2k−1) + 22k−1(γ (Q −
s ) + 1) holds for s �

k � 3.
© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Hypercubes form a fundamental model for parallel
computers and interconnection networks, cf. [22, Chap-
ter 7]. They have many fine properties that are essential
for network efficiency, such as recursive decomposition,
lots of symmetries, low regularity, and small diameter. Hy-
percubes also allow straightforward (local) routing and are
Hamiltonian. For more information on their fault tolerance
with respect to the Hamiltonicity see [19,20] and the ref-
erences therein. Having all this in mind it comes with no
big surprise that machines based on hypercubes have ac-
tually been implemented, see [22, p. 115] for the list of
implementations.

Interconnection networks often require a distribution
of limited supply of resources and from this point of
view various kinds of dominating sets serve as possi-
ble locations for placement of resources. For general as-
pects of the role of domination in complex networks see
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the book chapter [1]. Unfortunately, the exact domina-
tion number is known only for small dimensional hyper-
cubes and two infinite families: γ (Q 3) = 2, γ (Q 4) = 4,
γ (Q 5) = 7, γ (Q 6) = 12, and γ (Q n) = 2n−k for n = 2k − 1
or n = 2k , see [8]. In general, γ (Q n) � 2n−3 for n � 7 [3].
For some variations of domination studied on hypercubes
see [3,7,17], while for domination of closely related Fi-
bonacci cubes see [4,18]. Domination was also studied on
other types of interconnection networks as for instance on
toroidal meshes [21].

Since domination is very difficult on hypercubes, they
are not very appropriate when dealing with domination-
type problems. In this note we instead study the dom-
ination number of exchanged hypercubes EH(s, t). This
two-parametric family of graphs was proposed by Loh
et al. [13] and constitute a variation of the hypercube net-
works with numerous appealing properties, see [15] for
their bipancyclicity and [10,14,16] for their connectivity
and super connectivity, important measures for the fault-
tolerance of networks. In the special case when s = t , the
exchanged hypercubes coincide with the so-called dual-
cubes, a class of hypercube-like networks studied in [2,5,
11,12].
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We proceed as follows. In the next section we in-
troduce the exchanged hypercubes, recall some of their
properties, and define other concepts used in this note.
Then, in Section 3, our results are presented. We prove
several bounds on the domination number of exchanged
hypercubes and deduce from them that if t � 2, then
γ (EH(2, t)) = 2t+1. This exact result appears appealing be-
cause, as we have noted above, the domination number of
the usual hypercubes is an intrinsically difficult problem.
Using the fact that Q 2k−1 contains a perfect code (which
is just a corresponding Hamming code) we also prove that
γ (EH(s,2k − 1)) � (2s − 2k)γ (Q 2k−1) + 22k−1(γ (Q −

s ) + 1)

holds for s � k � 3.

2. Preliminaries

Graphs considered here are simple, finite, and con-
nected.

If n is a positive integer, then the n-dimensional hyper-
cube (or n-cube, for short) Q n is the graph with vertex set
{0,1}n , two vertices (strings) being adjacent if they differ
in exactly one coordinate. Hypercubes are vertex-transitive
graphs, hence all vertex-deleted subgraphs Q n − v , v ∈
V (Q n), are isomorphic, we denote it with Q −

n . The dis-
tance between vertices u, v ∈ V (Q n) is equal to the Ham-
ming distance between u and v , denoted H(u, v), that is,
the number of coordinates in which u and v differ.

Exchanged hypercubes are spanning subgraphs of hy-
percubes. Let u = ud−1 . . . u0 ∈ {0,1}d be a binary string,
d � 1. If j � i, then we will use the notation u j:i for the
substring of u between u j and ui , that is, u j:i = u j . . . ui .
For any integers s � 1 and t � 1, the exchanged hypercube
EH(s, t) is the graph with the vertex set {0,1}s+t+1. Hence,
if u ∈ V (EH(s, t)), then its coordinates are us+t . . . ut+1ut . . .

u1u0. Vertices u and v are adjacent if one of the following
conditions is satisfied:

(i) us+t:1 = vs+t:1, u0 �= v0,
(ii) u0 = v0 = 1, H(ut:1, vt:1) = 1, and us+t:t+1 = vs+t:t+1,

(iii) u0 = v0 = 0, H(us+t:t+1, vs+t:t+1) = 1, and ut:1 = vt:1.

Clearly, EH(s, t) has 2s+t+1 vertices. If u ∈ V (EH(s, t)) and
u0 = 0, then the degree of u is s + 1, otherwise the de-
gree of u is t + 1. It is also straightforward that for any s
and t , the exchanged hypercube EH(s, t) is isomorphic to
EH(t, s). The ratio of the number of edges in EH(s, t) to
that of Q s+t+1 is 1/2 + 1/(2(s + t + 1)) [6].

If G is a graph, then D ⊆ V (G) is a dominating set if ev-
ery vertex of V (G) − D is adjacent to some vertex of D .
The domination number γ (G) is the minimum cardinality
of a dominating set of G . A dominating set D of G is
a perfect code if any two vertices from D are at distance
at least 3. Hence the closed neighborhoods of the vertices
from a perfect code D partition the vertex of G , cf. [9, The-
orem 4.1].

A matching of a graph G is a set of independent edges
and a perfect matching is a matching M such that each ver-
tex is an endpoint of an edge from M . Finally, if X ⊆ V (G),
then the closed neighborhood N[X] is

⋃
u∈X N[u], where

N[u] is the closed neighborhood of u.

Fig. 1. Subgraphs EH0(s, t) and EH1(s, t) of EH(s, t).

3. Results

We begin with the following bounds:

Theorem 3.1. If s, t � 1 and s � t, then

max
{

2tγ (Q s),2sγ (Q t)
}
� γ

(
EH(s, t)

)

�
(
2s − 1

)
γ (Q t) + 2tγ (Q s).

Proof. Consider the following edge-subsets of EH(s, t):

E1 = {uv: us+t:1 = vs+t:1, u0 �= v0},
E2 = {

uv: us+t:t+1 = vs+t:t+1, H(ut:1, vt:1) = 1,

u0 = v0 = 1
}
,

E3 = {
uv: ut:1 = vt:1, H(us+t:t+1, vs+t:t+1) = 1,

u0 = v0 = 0
}
.

Let EH1(s, t) be the subgraph of EH(s, t) induced by the
edges E2. Then EH1(s, t) is the disjoint union of 2s copies
of Q t , we denote these cubes with Q (i)

t , 1 � i � 2s . In-
deed, fixing the leftmost s bits and fixing the rightmost
bit to 1, the induced subgraph is isomorphic to Q t . More-
over, there are no edges between two such induced sub-
graphs isomorphic to Q t . Similarly, the subgraph EH0(s, t)
of EH(s, t) induced by the edges E3 consists of 2t sub-
graphs isomorphic to Q s denoted with Q ( j)

s , 1 � j � 2t .
Finally, the edges from E1 form a perfect matching of
EH(s, t), it is a matching between EH0(s, t) and EH1(s, t).
More precisely, for any i, any vertex of Q (i)

t has exactly
one neighbor in EH0(s, t), each of these neighbors belong-
ing to different Q ( j)

s . See Fig. 1.
For the upper bound, consider the t-cube Q (1)

t . Then

each of Q (i)
s , 1 � i � 2t , has a (unique) neighbor in Q (1)

t .

In each of the cubes Q (i)
s select a minimum dominating

set Di such that if x ∈ N[V (Q (1)
t )] ∩ Q (i)

s then x ∈ Di .
(Such a dominating set exists since hypercubes are vertex-

transitive graphs.) Then Q (1)
t is dominated by

⋃2t

i=1 Di ,
see Fig. 1 again. For 2 � i � 2s let D ′

i be a minimum

dominating set of Q (i)
t . Then D = (

⋃2t

i=1 Di) ∪ (
⋃2s

i=2 D ′
i)

is a dominating set of EH(s, t). Clearly, |D| = 2tγ (Q s) +
(2s − 1)γ (Q t). The upper bound is proved.
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