
Information Processing Letters 114 (2014) 174–178

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Faster semi-external suffix sorting

Jasbir Dhaliwal

School of Computer Science and Information Technology, RMIT University, Australia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 December 2012
Received in revised form 26 November 2013
Accepted 26 November 2013
Available online 4 December 2013
Communicated by B. Doerr

Keywords:
Data structures
Suffix array
Burrows–Wheeler transform
String algorithms

Suffix array (SA) construction is a time-and-memory bottleneck in many string processing
applications. In this paper we improve the runtime of a small-space — semi-external — SA
construction algorithm by Kärkkäinen (TCS, 2007) [5]. We achieve a speedup in practice of
2–4 times, without increasing memory usage. Our main contribution is a way to implement
the “pointer copying” heuristic, used in less space-efficient SA construction algorithms, in
a memory-efficient way.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The suffix array (SA) provides efficient solutions to
many string processing problems, such as text indexing [1,
2] and repeat detection [3]. In many of these applications
SA construction [4] is a time-and-memory bottleneck. To
date, SA construction algorithms fall into two sets: large
memory and small memory. Algorithms in the first set
assume there is RAM sufficient to hold at least the in-
put string, x, and the output SA. The fastest existing al-
gorithms in this set [4] are also “lightweight”, using little
more memory than is required to hold x and SA, and use
a technique called “pointer copying”. The second, more re-
cent set of algorithms are slower, but use less RAM and
some external memory (disk) [5,6].

In this paper, our focus is on improving an SA con-
struction algorithm by Kärkkäinen [5]. This algorithm is in
the small-memory set: it uses only space to hold the in-
put string and some sublinear data structures, and outputs
the SA in a seek-friendly way to disk. In this sense, it is
a semi-external algorithm. Via two algorithmic parameters,
the algorithm uses O (n logσ) bits of working space and
runs in O (n log2

σ n) time in the worst case, with n log n bits
of disk used to store the output SA.

E-mail address: jasbir.dhaliwal@student.rmit.edu.au.

Our main improvement, is a way to incorporate the
above mentioned “pointer copying” technique into Kärkkäi-
nen’s algorithm, without increasing memory usage (RAM
or disk). Our improvements maintain the algorithm’s
worst-case behaviour but achieve a speedup in practice
of 2–4 times.

This paper proceeds as follows. Section 2 sets notation
and Section 3 gives an overview of Kärkkäinen’s algorithm.
Our algorithmic refinements are presented in Sections 4
and 6. Experimental results are in Section 7. Section 8 con-
cludes.

2. Preliminary definitions and notation

Let x be a string of n + 1 characters, x = x[0..n] =
x[0]x[1] . . . x[n], drawn from a fixed, ordered alphabet Σ

of size σ , that require (n + 1) logσ bits. The final char-
acter, x[n], is a special end-of-string character, $, which
occurs nowhere else in x and is lexicographically smaller
than any other character in Σ . We write x[i, j] to repre-
sent the substring of x starting at position i and ending
at position j. A substring x[0, i], 0 � i � n, that begins at
the start of x is called a prefix of x; and a substring x[i,n],
0 � i � n, that ends at the end of x is called a suffix of x.
For brevity, we will often refer to suffix x[i,n] as “suffix i”.

The suffix array of a string x, which we write as SA,
is an array SA[0..n] that contains the permutation of the

0020-0190/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ipl.2013.11.017

http://dx.doi.org/10.1016/j.ipl.2013.11.017
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:jasbir.dhaliwal@student.rmit.edu.au
http://dx.doi.org/10.1016/j.ipl.2013.11.017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2013.11.017&domain=pdf

J. Dhaliwal / Information Processing Letters 114 (2014) 174–178 175

integers 0..n such that x[SA[0]..n] ≺ x[SA[1]..n] ≺ · · · ≺
x[SA[n]..n]. SA requires n log n bits of storage.

Finally, the Burrows–Wheeler transform [7], which we
write as BWT, is a permutation of x defined by SA:
BWT[i] = x[SA[i] − 1], unless SA[i] = 0, in which case
BWT[i] = $.

3. Kärkkäinen’s algorithm

The first step in Kärkkäinen’s algorithm is to construct
a difference cover sample DCSv(x) of the suffixes of x. We
refer the reader to [8,5,9] for details of the data structure,
and just note its salient properties here. DCSv(x) is a data
structure that takes O (n log n/

√
v) bits of space, and al-

lows the relative order of any two suffixes i and j known
to share a common prefix of length � � v to be determined
in O (1) time. Thus, DCSv(x) allows the relative order of
any two suffixes of x to be determined in O (v) time: com-
pare their first v characters, and if there is a character
mismatch, the order has been resolved; if there is a tie
after v characters, the order is determined in O (1) time
by querying DCSv(x). Parameter v controls a space–time
tradeoff.

The next step is to choose and sort a random set of
suffixes from x called splitters. We enforce that the lexico-
graphically smallest and largest suffixes in the whole string
are also in the set of splitters. Once sorted, pairs of lex-
icographically adjacent splitters (lower- and upper-bound
respectively) conceptually partition the SA into blocks.
Let bmax be the total number of suffixes we are able to
store in RAM (having allowed space for the input string
and DCSv(x)).

Kärkkäinen’s algorithm constructs SA in rounds, one
block at a time, with blocks determined by the splitters.
First the leftmost block, containing all suffixes greater than
or equal to the leftmost splitter, and all suffixes strictly less
than the second splitter, are collected, sorted and written
to disk to form a contiguous section of SA. Memory is then
reused to process the next block, which will contain suf-
fixes falling between the second and third splitters.

More specifically, a left-to-right scan is made over x
while collecting and storing pointers of suffixes that have
the same or higher lexicographical order (lexorder) than
the lower-bound splitter but lower than the upper-bound
splitter. To determine efficiently if a suffix falls between
the splitters, the splitters are preprocessed using a Knuth–
Morris–Pratt (KMP)-like failure function. If a suffix shares
a prefix of v or more with one of the splitters, then its
inclusion in the block is determined by DCSv(x). The KMP
preprocessing keeps the total number of character compar-
isons to O (n) per scan.

By the end of the scan the block contains pointers to
suffixes lexicographically between the lower- and upper-
bound splitters, but they are not in any particular order.
So we sort them using Multikey Quicksort (MKQS) [10] to
depth v , and the order of any suffixes that remained tied
is determined with DCSv(x). In this way, the time required
to sort b suffixes is O (vb + b log b) [5].

Of course, because we picked the splitters randomly,
there can be cases for which the number of suffixes to
be collected exceeds bmax. Kärkkäinen provides a clever

method for dealing with such cases. Whenever we need to
add a suffix to a full block, the scan is halted and the block
is sorted using the combination of MKQS and DCSv(x) de-
scribed above. The lexicographically larger half of the block
is then discarded and the median suffix in the block be-
comes the new upper-bound splitter. The scan then re-
sumes. This method does not (asymptotically) increase the
number of scans.

As noted above, v and bmax allow for different space–
time tradeoffs. Apart from x, space usage is mainly dom-
inated by DCSv(x) and B (a block of SA). DCSv(x) is
computed in O (|S| log |S| + v|S|) time and in O (v + |S|)
space where S is a set of Θ(n/

√
v) suffixes. In addition,

O (bmax) = O (n/
√

v) words for B and O (n/bmax) = O (
√

v)

for the splitters, which is O (n log n/
√

v) in total. Setting
v = log2

σ n (respectively, v = log2 n), the total space com-
plexity becomes O (n logσ) (respectively, O (n)) bits. The
runtime on other hand is dominated by the building and
processing of SA blocks, which overall requires O (n log n +
vn) time. With v = log2

σ n (respectively, v = log2 n) this is
O (n log2

σ n) (respectively, O (n log2 n)) time.

4. Faster splitter comparisons

We now describe our first optimization. Using suffixes
as splitters as Kärkkäinen described is a good general ap-
proach to dividing lexicographic space, which in turn al-
lows the SA to be built one block at a time. In practice
however, we found a significant boost to runtime is possi-
ble if one simply uses character frequencies to divide the
suffixes into lexicographic blocks.

More precisely, we make a scan of x and count the
frequency of each character. Let C[0..σ] be an array con-
taining these character frequencies. We then (conceptu-
ally) partition the suffix array by selecting k symbols, c0 <

c1 < · · · < ck , such that, for i < k,
∑ci+1

j=ci
C[j] < bmax and

∑ci+2
j=ci

C[j] > bmax. In other words, we use the character
frequencies to partition SA into blocks containing close to
bmax suffixes. Consecutive selected symbols are later used
as (respectively) lower- and upper-bound splitters.

This approach is faster than using suffixes as splitters
because suffix inclusion in a block is determined with
a single symbol comparison, not up to v , as can be the
case with Kärkkäinen’s original method. Moreover, KMP
preprocessing of the v-length prefix of suffix splitters is
avoided. When inclusion cannot be determined by one
symbol alone, it is easy to have the algorithm fall back to
using suffix splitters. In order to enable this when count-
ing characters, we also collect a single suffix that starts
with each distinct symbol.

Of course, this idea can be generalized to q-grams, for
constant q, or q = O (logσ n) for packed strings. In practice,
we found using bigrams (q = 2) provided the best balance
of runtime improvement and extra memory usage for the
inputs we tested.

5. Pointer copying in a lightweight setting

Pointer Copying is the name given to a class of heuristic
methods for suffix sorting where a complete sort of a spe-
cial subset of suffixes can be used to cheaply derive the

Download English Version:

https://daneshyari.com/en/article/10331852

Download Persian Version:

https://daneshyari.com/article/10331852

Daneshyari.com

https://daneshyari.com/en/article/10331852
https://daneshyari.com/article/10331852
https://daneshyari.com

