
Information Processing Letters 115 (2015) 87–92

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Completeness of context-sensitive rewriting ✩

Salvador Lucas a,b,∗
a CS Dept. at the University of Illinois at Urbana-Champaign, USA
b DSIC, Universitat Politècnica de València, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 March 2014
Received in revised form 7 July 2014
Accepted 8 July 2014
Available online 15 July 2014
Communicated by J.L. Fiadeiro

Keywords:
Algebraic semantics
Context-sensitive rewriting
Formal reasoning
Programming languages

Restrictions of rewriting may turn normal forms of some terms unreachable, leading to
incomplete computations. Context-sensitive rewriting (csr) is the restriction of rewriting that
only permits reductions on arguments selected by a replacement map μ, which associates a
subset μ(f) of argument indices with each function symbol f . Hendrix and Meseguer
defined an algebraic semantics for Term Rewriting Systems (TRSs) executing csr that
can be used to reason about programs written in programming languages like CafeOBJ
and Maude, where such replacement restrictions can be specified in programs. Semantic
completeness of csr was also defined. In this paper we show that canonical replacement
maps, which play a prominent role in simulating rewriting computations with csr, are
necessary for completeness in important classes of TRSs.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Recursive definitions that use conditional expressions
often require the use of syntactic restrictions to obtain ter-
minating programs.

Example 1. The following TRS encodes a definition of the
factorial function:

p(s(x)) → x

0 + x → x

s(x) + y → s(x + y)

zero(0) → true

0 × y → 0

s(x) × y → y + (x × y)

✩ Developed during a sabbatical year at UIUC. Supported by NSF CNS
13-19109, MINECO project TIN2010-21062-C02-02, GV (Generalitat Valen-
ciana) Grants BEST/2014/026 and PROMETEO/2011/052.

* Correspondence to: DSIC, Universitat Politècnica de València, Camino
de Vera s/n, 46022 Valencia, Spain.

zero(s(x)) → false

if(true, x, y) → x

if(false, x, y) → y

fact(x) → if
(
zero(x), s(0), fact

(
p(x)

) × x
)

Without any restriction on the evaluation of the arguments
of if, the last rule makes the program nonterminating. Most
implementations first (or just) evaluate the boolean condi-
tion and restrict the evaluation of the other arguments.

In context-sensitive rewriting (csr [4,5]), fixed restric-
tions on reductions are imposed by means of a replacement
map μ that, for each k-ary symbol f , specifies the argu-
ment positions i ∈ μ(f) ⊆ {1, . . . , k} which can be rewrit-
ten. We say that a replacement map is compatible with a
given rule � → r of a TRS R, if the positions of nonvariable
symbols in � are always reducible under μ. We say that μ
is a canonical replacement map if it is compatible with all
rules of the TRS R. The use of canonical replacement maps
μ ensures that context-sensitive computations may stop
yielding head-normal forms, values or even normal forms
[4,5]. With μ(if) = {1} we obtain a terminating behavior for

http://dx.doi.org/10.1016/j.ipl.2014.07.004
0020-0190/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2014.07.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
http://dx.doi.org/10.1016/j.ipl.2014.07.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2014.07.004&domain=pdf

88 S. Lucas / Information Processing Letters 115 (2015) 87–92

R in Example 1 which can be proved with existing ter-
mination tools like mu-term. Indeed, csr can compute the
value sn!(0) of any call fact(sn(0)), for n ≥ 0, without run-
ning in any termination problem (Example 4). In contrast,
a normalizing evaluation strategy (e.g., the leftmost–out-
ermost rewriting strategy, which is normalizing for R)
does not stop with terms like fact(p(0)) having no normal
form.

Recently, several authors have investigated semantic
properties of computations with csr [3,6]. The motiva-
tion is devising appropriate models to (inductively) reason
about properties of programs of programming languages
like CafeOBJ [2] or Maude [1], where the specification of
context-sensitive replacement restrictions is allowed. Hen-
drix and Meseguer introduce a number of semantic prop-
erties (μ-canonical completeness, μ-semantic completeness
and μ-sufficient completeness) that can be used to guar-
antee that csr is well-suited to tackle the desired formal
framework for reasoning about programs with replacement
restrictions. The results in [3] are completely general and
do not refer to any specific class of TRSs or replacement
maps. This is in sharp contrast with the analysis of com-
pleteness of csr in [4,5], where left linearity of TRSs and
canonicity of replacement maps are required. In this paper
we show that, for orthogonal TRSs, the use of a canonical
replacement map is necessary for enjoying the three previ-
ous semantic properties. For canonical completeness, it is
also necessary that all arguments of all constructor symbols be
μ-replacing (not only with orthogonal TRSs but with any
TRS). Furthermore, being completely defined (i.e., ground
normal forms contain no defined symbols) is also necessary
for TRSs R that enjoy the considered semantic proper-
ties.

2. Preliminaries

Given a set A, a binary relation R ⊆ A × A is terminating
if there is no infinite sequence a1, a2, . . . , an, . . . such that
for all i ≥ 1, ai ∈ A and ai Rai+1. In this paper, X denotes a
countable set of variables and F denotes a signature, i.e., a
set of function symbols { f , g, . . .}, each having a fixed ar-
ity given by a mapping ar : F → N. The set of terms built
from F and X is T (F ,X). A term without variables is
called ground. The set of ground terms is T (F). A term
is said to be linear if it has no multiple occurrences of a
single variable. Terms are viewed as labelled trees in the
usual way. Positions p, q, . . . are represented by chains of
positive natural numbers used to address subterms of t .
We denote the empty chain by Λ. Given positions p, q, we
denote its concatenation as p.q. Positions are ordered by
the standard prefix ordering ≤. Given a set of positions
P , minimal≤(P) is the set of minimal positions of P (or-
dered by ≤). If p is a position, and Q is a set of positions,
p.Q = {p.q | q ∈ Q }. The set of positions of a term t is
Pos(t). Positions of non-variable symbols in t are denoted
as PosF (t), and PosX (t) are the positions of variables.
The subterm of t at position p is denoted as t|p and t[s]p

is t with t|p replaced by s. The symbol labelling the root
of t is denoted as root(t). A rewrite rule is an ordered pair
(�, r), written � → r (or α : � → r if labelled α for further
reference), with �, r ∈ T (F ,X), l �∈ X and Var(r) ⊆ Var(l).

The left-hand side (lhs) of the rule is � and r is the right-
hand side (rhs). A TRS is a pair R = (F , R) where R is a
set of rewrite rules. L(R) denotes the set of lhs’s of R.
An instance σ(l) of a lhs l of a rule is a redex. The set
of redex positions in t is PosR(t). If PosR(t) = ∅, then
t is a normal form. Let NFR (resp. GNFR) be the set of
(ground) normal forms of R. A TRS R is left-linear if for
all l ∈ L(R), l is a linear term. Given R = (F , R), we con-
sider F as the disjoint union F = C 	D of symbols c ∈ C ,
called constructors and symbols f ∈ D, called defined func-
tions, where D = {root(l) | l → r ∈ R} and C =F −D. Then,
T (C,X) (resp. T (C)) is the set of (ground) constructor
terms. A defined symbol f is completely defined if there is
no t ∈ GNFR such that root(t) = f . A TRS R = (C 	 D, R)

is a constructor system (CS) if for all f (�1, . . . , �k) → r ∈ R ,
�i ∈ T (C,X), for 1 ≤ i ≤ k. A term t ∈ T (F ,X) rewrites
(in one-step) to s (at position p), written t

p→R s (or
just t → s), if t|p = σ(�) and s = t[σ(r)]p , for some rule
� → r ∈ R , p ∈ Pos(t) and substitution σ . We say that s
rewrites to t if s →∗ t . A TRS is terminating if → is termi-
nating. A term is said to be normalizing if it rewrites into
a normal form. A TRS R is normalizing if every term is
normalizing. A TRS is called completely defined or exhaus-
tive if no ground normal form contains a defined sym-
bol.

Context-sensitive rewriting A mapping μ : F → ℘(N) is
a replacement map (F -map) if for all f ∈ F , μ(f) ⊆
{1, . . . , ar(f)} [4]. MF is the set of F -maps. For a TRS R =
(F , R), we use MR instead of MF . We write μ
 μ′ if for
all f ∈ F , μ(f) ⊆ μ′(f) and say that μ is more restrictive
than μ′ . We write (μ �μ′)(f) = μ(f) ∪μ′(f) for all f ∈F .
The set of μ-replacing positions of t is: Posμ(t) = {Λ}, if
t ∈X and Posμ(t) = {Λ} ∪ ⋃

i∈μ(root(t)) i.Posμ(t|i) if t �∈X .
The set of non-μ-replacing positions is Posμ(t) =Pos(t) −
Posμ(t). The non-μ-replacing positions of t have a frontier
set Frμ(t) = minimal≤(Posμ(t)) with the active positions.
The maximal replacing context MRCμ(t) = t[�]Frμ(t) of t is
the part of t whose positions are μ-replacing in t [5].
The canonical replacement map μcan

R of R is the most re-
strictive replacement map ensuring that the nonvariable sub-
terms of the left-hand sides of the rules of R are μ-replacing
[4,5]: for each f ∈ F and i ∈ {1, . . . , ar(f)}, i ∈ μcan

R (f)
iff ∃� ∈ L(R), p ∈ PosF (l), (root(l|p) = f ∧ p.i ∈ PosF (l)).
Given a TRS R, CMR = {μ ∈ MR | μcan

R
 μ} is the set
of replacement maps that are equal to or less restric-
tive than the canonical replacement map. If μ ∈ CMR ,
we say that μ is a canonical replacement map for R.
Given a TRS R = (F , R), μ ∈ MR , and s, t ∈ T (F ,X), s

μ-rewrites to t , written s
p

↪→R,μ t (or s ↪→R,μ t , s ↪→μ t ,
or even s ↪→ t), if s

p→R t and p ∈ Posμ(s) [4]. If μ ∈
CMR , we often say that ↪→μ performs canonical context-
sensitive rewriting steps [5]. A term t without replacing
redexes (i.e., PosμR(t) = ∅) is called a μ-normal form, and
NF

μ
R (resp. GNF

μ
R) is the set of (ground) μ-normal forms

of R. We write s ↪→! t if t is a μ-normal form of s,
i.e., s ↪→∗ t and t ∈ NF

μ
R; if s ↪→! t and s ↪→! t′ imply

t = t′ , then we denote such unique μ-normal form of s
as s↓μ .

Download English Version:

https://daneshyari.com/en/article/10331864

Download Persian Version:

https://daneshyari.com/article/10331864

Daneshyari.com

https://daneshyari.com/en/article/10331864
https://daneshyari.com/article/10331864
https://daneshyari.com

