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Restrictions of rewriting may turn normal forms of some terms unreachable, leading to 
incomplete computations. Context-sensitive rewriting (csr) is the restriction of rewriting that 
only permits reductions on arguments selected by a replacement map μ, which associates a 
subset μ( f ) of argument indices with each function symbol f . Hendrix and Meseguer 
defined an algebraic semantics for Term Rewriting Systems (TRSs) executing csr that 
can be used to reason about programs written in programming languages like CafeOBJ
and Maude, where such replacement restrictions can be specified in programs. Semantic 
completeness of csr was also defined. In this paper we show that canonical replacement 
maps, which play a prominent role in simulating rewriting computations with csr, are 
necessary for completeness in important classes of TRSs.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Recursive definitions that use conditional expressions
often require the use of syntactic restrictions to obtain ter-
minating programs.

Example 1. The following TRS encodes a definition of the 
factorial function:

p(s(x)) → x

0 + x → x

s(x) + y → s(x + y)

zero(0) → true

0 × y → 0

s(x) × y → y + (x × y)
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zero(s(x)) → false

if(true, x, y) → x

if(false, x, y) → y

fact(x) → if
(
zero(x), s(0), fact

(
p(x)

) × x
)

Without any restriction on the evaluation of the arguments 
of if, the last rule makes the program nonterminating. Most 
implementations first (or just) evaluate the boolean condi-
tion and restrict the evaluation of the other arguments.

In context-sensitive rewriting (csr [4,5]), fixed restric-
tions on reductions are imposed by means of a replacement 
map μ that, for each k-ary symbol f , specifies the argu-
ment positions i ∈ μ( f ) ⊆ {1, . . . , k} which can be rewrit-
ten. We say that a replacement map is compatible with a 
given rule � → r of a TRS R, if the positions of nonvariable 
symbols in � are always reducible under μ. We say that μ
is a canonical replacement map if it is compatible with all 
rules of the TRS R. The use of canonical replacement maps 
μ ensures that context-sensitive computations may stop 
yielding head-normal forms, values or even normal forms 
[4,5]. With μ(if) = {1} we obtain a terminating behavior for 
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R in Example 1 which can be proved with existing ter-
mination tools like mu-term. Indeed, csr can compute the 
value sn!(0) of any call fact(sn(0)), for n ≥ 0, without run-
ning in any termination problem (Example 4). In contrast, 
a normalizing evaluation strategy (e.g., the leftmost–out-
ermost rewriting strategy, which is normalizing for R) 
does not stop with terms like fact(p(0)) having no normal 
form.

Recently, several authors have investigated semantic 
properties of computations with csr [3,6]. The motiva-
tion is devising appropriate models to (inductively) reason 
about properties of programs of programming languages 
like CafeOBJ [2] or Maude [1], where the specification of 
context-sensitive replacement restrictions is allowed. Hen-
drix and Meseguer introduce a number of semantic prop-
erties (μ-canonical completeness, μ-semantic completeness
and μ-sufficient completeness) that can be used to guar-
antee that csr is well-suited to tackle the desired formal 
framework for reasoning about programs with replacement 
restrictions. The results in [3] are completely general and 
do not refer to any specific class of TRSs or replacement 
maps. This is in sharp contrast with the analysis of com-
pleteness of csr in [4,5], where left linearity of TRSs and 
canonicity of replacement maps are required. In this paper 
we show that, for orthogonal TRSs, the use of a canonical 
replacement map is necessary for enjoying the three previ-
ous semantic properties. For canonical completeness, it is 
also necessary that all arguments of all constructor symbols be 
μ-replacing (not only with orthogonal TRSs but with any 
TRS). Furthermore, being completely defined (i.e., ground 
normal forms contain no defined symbols) is also necessary
for TRSs R that enjoy the considered semantic proper-
ties.

2. Preliminaries

Given a set A, a binary relation R ⊆ A × A is terminating
if there is no infinite sequence a1, a2, . . . , an, . . . such that 
for all i ≥ 1, ai ∈ A and ai Rai+1. In this paper, X denotes a 
countable set of variables and F denotes a signature, i.e., a 
set of function symbols { f , g, . . .}, each having a fixed ar-
ity given by a mapping ar : F → N. The set of terms built 
from F and X is T (F ,X ). A term without variables is 
called ground. The set of ground terms is T (F). A term 
is said to be linear if it has no multiple occurrences of a 
single variable. Terms are viewed as labelled trees in the 
usual way. Positions p, q, . . . are represented by chains of 
positive natural numbers used to address subterms of t . 
We denote the empty chain by Λ. Given positions p, q, we 
denote its concatenation as p.q. Positions are ordered by 
the standard prefix ordering ≤. Given a set of positions 
P , minimal≤(P ) is the set of minimal positions of P (or-
dered by ≤). If p is a position, and Q is a set of positions, 
p.Q = {p.q | q ∈ Q }. The set of positions of a term t is 
Pos(t). Positions of non-variable symbols in t are denoted 
as PosF (t), and PosX (t) are the positions of variables. 
The subterm of t at position p is denoted as t|p and t[s]p

is t with t|p replaced by s. The symbol labelling the root 
of t is denoted as root(t). A rewrite rule is an ordered pair 
(�, r), written � → r (or α : � → r if labelled α for further 
reference), with �, r ∈ T (F ,X ), l �∈ X and Var(r) ⊆ Var(l). 

The left-hand side (lhs) of the rule is � and r is the right-
hand side (rhs). A TRS is a pair R = (F , R) where R is a 
set of rewrite rules. L(R) denotes the set of lhs’s of R. 
An instance σ(l) of a lhs l of a rule is a redex. The set 
of redex positions in t is PosR(t). If PosR(t) = ∅, then 
t is a normal form. Let NFR (resp. GNFR) be the set of 
(ground) normal forms of R. A TRS R is left-linear if for 
all l ∈ L(R), l is a linear term. Given R = (F , R), we con-
sider F as the disjoint union F = C 	D of symbols c ∈ C , 
called constructors and symbols f ∈ D, called defined func-
tions, where D = {root(l) | l → r ∈ R} and C =F −D. Then, 
T (C,X ) (resp. T (C)) is the set of (ground) constructor 
terms. A defined symbol f is completely defined if there is 
no t ∈ GNFR such that root(t) = f . A TRS R = (C 	 D, R)

is a constructor system (CS) if for all f (�1, . . . , �k) → r ∈ R , 
�i ∈ T (C,X ), for 1 ≤ i ≤ k. A term t ∈ T (F ,X ) rewrites 
(in one-step) to s (at position p), written t

p→R s (or 
just t → s), if t|p = σ(�) and s = t[σ(r)]p , for some rule 
� → r ∈ R , p ∈ Pos(t) and substitution σ . We say that s
rewrites to t if s →∗ t . A TRS is terminating if → is termi-
nating. A term is said to be normalizing if it rewrites into 
a normal form. A TRS R is normalizing if every term is 
normalizing. A TRS is called completely defined or exhaus-
tive if no ground normal form contains a defined sym-
bol.

Context-sensitive rewriting A mapping μ : F → ℘(N) is 
a replacement map (F -map) if for all f ∈ F , μ( f ) ⊆
{1, . . . , ar( f )} [4]. MF is the set of F -maps. For a TRS R =
(F , R), we use MR instead of MF . We write μ 
 μ′ if for 
all f ∈ F , μ( f ) ⊆ μ′( f ) and say that μ is more restrictive
than μ′ . We write (μ �μ′)( f ) = μ( f ) ∪μ′( f ) for all f ∈F . 
The set of μ-replacing positions of t is: Posμ(t) = {Λ}, if 
t ∈X and Posμ(t) = {Λ} ∪ ⋃

i∈μ(root(t)) i.Posμ(t|i) if t �∈X . 
The set of non-μ-replacing positions is Posμ(t) =Pos(t) −
Posμ(t). The non-μ-replacing positions of t have a frontier
set Frμ(t) = minimal≤(Posμ(t)) with the active positions. 
The maximal replacing context MRCμ(t) = t[�]Frμ(t) of t is 
the part of t whose positions are μ-replacing in t [5]. 
The canonical replacement map μcan

R of R is the most re-
strictive replacement map ensuring that the nonvariable sub-
terms of the left-hand sides of the rules of R are μ-replacing
[4,5]: for each f ∈ F and i ∈ {1, . . . , ar( f )}, i ∈ μcan

R ( f )
iff ∃� ∈ L(R), p ∈ PosF (l), (root(l|p) = f ∧ p.i ∈ PosF (l)). 
Given a TRS R, CMR = {μ ∈ MR | μcan

R 
 μ} is the set 
of replacement maps that are equal to or less restric-
tive than the canonical replacement map. If μ ∈ CMR , 
we say that μ is a canonical replacement map for R. 
Given a TRS R = (F , R), μ ∈ MR , and s, t ∈ T (F ,X ), s

μ-rewrites to t , written s 
p

↪→R,μ t (or s ↪→R,μ t , s ↪→μ t , 
or even s ↪→ t), if s 

p→R t and p ∈ Posμ(s) [4]. If μ ∈
CMR , we often say that ↪→μ performs canonical context-
sensitive rewriting steps [5]. A term t without replacing 
redexes (i.e., PosμR(t) = ∅) is called a μ-normal form, and 
NF

μ
R (resp. GNF

μ
R) is the set of (ground) μ-normal forms 

of R. We write s ↪→! t if t is a μ-normal form of s, 
i.e., s ↪→∗ t and t ∈ NF

μ
R; if s ↪→! t and s ↪→! t′ imply 

t = t′ , then we denote such unique μ-normal form of s
as s↓μ .
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