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Yang et al. (2004) [8] proved that the generalized honeycomb torus GHT(m, n, d) is 
hamiltonian, but their proofs are not sufficient when the width m is odd. In this paper, 
we propose a series of procedures for constructing hamiltonian cycles in generalized 
honeycomb tori, which apply to every instance of GHT(m, n, d) with odd width m.
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1. Introduction

The advent of very large scale integrated circuit tech-
nology has enabled the construction of very complex 
and large parallel computing systems. By most accounts, 
a supercomputer achieves its gains by increasing the 
number of processing elements, rather than by using 
faster processors. The most difficult technical problem 
in constructing a supercomputer will be the design of 
the interconnection network through which the proces-
sors communicate and exchange data with each other. 
Therefore, selecting an appropriate and adequate topo-
logical structure of interconnection networks will be-
come a critical issue in the field of parallel comput-
ing [6].

There exist a lot of mutually conflicting requirements 
in designing the topology of an interconnection network, 
such that it is almost impossible to design a network 
which is optimal from all aspects. One has to design a 
suitable network according to the requirements and its 
properties. Many efficient algorithms were originally de-
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signed based on rings for solving a variety of algebraic 
problems, graph problems and some parallel applications, 
such as those in image and signal processing. Thus, it is 
important to have an effective cycle in a network, prefer-
ably the hamiltonian cycle.

Stojmenovic [7] introduced three classes of honeycomb 
torus networks: hexagonal honeycomb torus, rectangular 
honeycomb torus and parallelogramic honeycomb torus. 
Megson et al. [4,5] proved that a hexagonal honeycomb 
torus is hamiltonian and fault-tolerant hamiltonian with 
two adjacent faulty vertices. Cho and Hsu [1] proposed the 
generalized honeycomb torus, which includes the above 
mentioned honeycomb tori as special instances. Yang et 
al. [8] proved that all generalized honeycomb tori are 
hamiltonian. However, we found that their proofs are not 
sufficient when the width m is odd.

In this paper, we propose a series of procedures for 
constructing the hamiltonian cycles in generalized honey-
comb tori, which apply to every instance of GHT(m, n, d)

with odd width m. The rest of this paper is organized as 
follows. Section 2 gives definitions and notations. Section 3
presents the main result of the paper. Section 4 makes the 
concluding remarks.
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Fig. 1. Two examples of generalized honeycomb tori. (a) GHT(4,6,2). (b) GHT(5,6,3).

2. Definitions and notations

The topological structure of an interconnection network 
can be modeled by a graph G = (V , E), where vertices and 
edges correspond to processors and communication links 
between processors, respectively. This fact has been univer-
sally accepted and used by computer scientists and engi-
neers. Moreover, practically it has been demonstrated that 
graph theory is a fundamental and powerful mathemati-
cal tool for designing and analyzing topological structure 
of interconnection networks.

A hamiltonian cycle of a graph is a cycle that traverses 
every vertex of the graph exactly once. A graph is hamilto-
nian if it contains a hamiltonian cycle. We follow [2] for 
graph-theoretical terminology and notations not defined 
here.

Definition 2.1. (See [1].) Let n be a positive even inte-
ger, m ≥ 2 be a positive integer, and d be a nonnega-
tive integer which is less than n and of the same parity 
with m. An (m, n, d) generalized honeycomb torus, denoted 
by GHT(m, n, d), is a graph with the vertex set

V
(
GHT(m,n,d)

) = {
(i, j) : 0 ≤ i ≤ m − 1,0 ≤ j ≤ n − 1

}
.

m, n and d are named the width, height and slope of 
GHT(m, n, d). For a vertex (i, j) of GHT(m, n, d), i and j
are called its first and the second component, respectively. 
Here and in what follows, all arithmetic operations car-
ried out on the first and second components are modulo 
m and n, respectively. Two vertices (x1, y1) and (x2, y2)

with x1 ≤ x2 are adjacent if and only if one of the follow 
conditions is satisfied:

(1) (x2, y2) = (x1, y1 + 1) or (x2, y2) = (x1, y1 − 1);
(2) 0 ≤ x1 ≤ m − 2, x1 + y1 is odd, and (x2, y2) = (x1 +

1, y1);
(3) x1 = 0, y1 is even, and (x2, y2) = (m − 1, y1 + d).

Fig. 1 gives two examples of generalized honeycomb 
tori. We can easily see that generalized honeycomb tori are 
3-regular bipartite graphs.

Yang et al. [8] proved that every generalized hon-
eycomb torus is hamiltonian. However, when m is odd, 

Fig. 2. Three vertex-disjoint cycles in GHT(5,12,7).

their scheme for constructing hamiltonian cycles is only 
valid when gcd( 2n

gcd(n,d+1)
, 2(d+1)

gcd(n,d+1)−1 ) = 1. For example in 
GHT(5, 12, 7), they get three vertex-disjoint cycles instead 
of a hamiltonian cycle (see Fig. 2).

Definition 2.2. Given two positive integers a and b where 
a ≥ b, GC(a, b) is a graph defined by the vertex set 
{0, 1, . . . , a − 1} and the edge set {(i, i + b) : 0 ≤ i ≤ a − 1}, 
where the arithmetic is modulo a [8].

Given two positive integers a and b where a ≥ b, let 
gcd(a, b) denote the greatest common divisor of a and b. 
The following lemmas will be useful in this paper.

Lemma 2.1. If gcd(a, b) = 1, then GC(a, b) is a cycle [8].

Lemma 2.2. If gcd(a, b) = c ≥ 2, then GC(a, b) is composed of 
c vertex-disjoint cycles 〈0, b, 2b, 3b, . . . , (a/c − 1)b, 0〉, 〈1, b +
1, 2b +1, 3b +1, . . . , (a/c −1)b +1, 1〉, 〈2, b +2, 2b +2, 3b +
2, . . . , (a/c − 1)b + 2, 2〉, . . . , and 〈c − 1, b + c − 1, 2b + c −
1, 3b + c − 1, . . . , (a/c − 1)b + c − 1, c − 1〉.
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