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Disjunctively constrained versions of classic problems in graph theory such as shortest 
paths, minimum spanning trees and maximum matchings were recently studied. In this 
article we introduce disjunctive constrained versions of the Maximum Acyclic Subgraph 
problem. Negative disjunctive constraints state that a certain pair of edges cannot be 
contained simultaneously in a feasible solution. Positive disjunctive constraints enforces 
that at least one arc for the underlying pair is in a feasible solution. It is convenient to 
represent these disjunctive constraints in terms of an undirected graph, called constraint 
graph, whose vertices correspond to the arcs of the original graph, and whose edges encode 
the disjunctive constraints. For the Maximum Acyclic Subgraph problem under Negative 
Disjunctive Constraints we develop 1/2-approximative algorithms that are polynomial for 
certain classes of constraint graphs. We also show that determining if a feasible solution 
exists for an instance of the Maximum Acyclic Subgraph problem under Positive Disjunctive 
Constraints is an NP-Complete problem.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A directed graph may contain directed cycles which 
may be undesirable or not allowed at all in some practical 
applications. Therefore, in order to withdraw as few arcs 
as possible, a maximum directed acyclic graph should be 
found. The problem of finding the Maximum Acyclic Sub-
graph (MAS) of a given directed graph G = (V , A) consists 
in determining a maximum subset A′ ⊆ A for which the 
subgraph G ′ = (V , A′) is cycle free. This problem is known 
to be NP-hard [5]. Simple approximation algorithms for 
this problem produce solutions with at least half of the 
number of arcs of an optimal solution [4].
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Negative disjunctive constraints forbid a certain pair of 
entities of the problem to be simultaneously part of any 
feasible solution. On the other hand, positive disjunctive 
constraints force at least one of the entities of a given pair 
to be part of any feasible solution.

Disjunctively constrained versions of classic problems in 
graph theory such as shortest paths, minimum spanning 
trees and maximum matchings were recently studied [2]. 
All these problems, which are polynomially solvable in 
their basic form, turn NP-Hard in the presence of such 
disjunctive constraints. The maximum flow problem under 
positive and negative disjunctive constraints [8] and the 
classical 0–1 knapsack problem under negative disjunctive 
constraints [7], where also recently tackled in the litera-
ture.

In this paper we consider the Maximum Acyclic Sub-
graph problem under Negative Disjunctive Constraints 
(MASNDC) and the Maximum Acyclic Subgraph prob-
lem under Positive Disjunctive Constraints (MASPDC). 
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To formally define the problems, let G = (V , A) be a di-
rected graph and let Ḡ = (A, E) be an undirected graph, 
called constraint graph.

The Maximum Acyclic Subgraph problem under Nega-
tive Disjunctive Constraints consists in determining a sub-
set A′ ⊆ A of maximum cardinality for which the subgraph 
G ′ = (V , A′) is cycle free and A′ is an independent set 
in Ḡ . On the other hand, the Maximum Acyclic Subgraph 
problem under Positive Disjunctive Constraints consists in 
determining a subset A′ ⊆ A of maximum cardinality for 
which the subgraph G ′ = (V , A′) is cycle free and A′ is a 
vertex cover in Ḡ . Since MASNDC and MASPDC have MAS 
as a special case (when E = ∅), both are NP-Hard.

In this paper we propose simple modifications of exist-
ing approximation algorithms for MAS that produce solu-
tions to MASNDC maintaining the 1/2-approximation ratio 
of the original algorithms. Moreover, we show that de-
termining the existence of a feasible solution for a given 
MASPDC instance is NP-Hard.

The rest of the paper is organized as follows. In the 
next section we present three known algorithms for ap-
proximating MAS. In Section 3 we propose six new ap-
proximation algorithms for MASNDC adapting those from 
the MAS literature and following two distinct approaches. 
In Section 4 we prove that the feasibility of MASPDC is an 
NP-Complete problem. Finally, in Section 5 we give some 
concluding remarks.

2. Approximation algorithms for maximum acyclic 
subgraph

Concerning MAS, we present in this section three al-
gorithms that produce solutions with at least |A|/2 arcs. 
Since the cardinality of A is an upper bound to the optimal 
solution value, the algorithms are 1/2-approximative. No 
better constant approximation polynomial algorithm exists 
for the Maximum Acyclic Subgraph problem and none is 
expected to exist assuming the Unique Games Conjecture 
and P �= NP [1,6].

Algorithm Sort(G)

This straightforward algorithm first sorts the vertices of 
the graph arbitrarily assigning a distinct label πi to every 
vertex i ∈ V . Then, it divides the arcs in A into two sub-
sets: in A f it stores all arcs a = (i, j) ∈ A such that πi < π j
and in Ab all arcs a = (i, j) ∈ A such that πi > π j . The al-
gorithm just picks the subset (A f or Ab) with maximum 
cardinality and returns the subgraph with the selected set 
of arcs as the solution.

Theorem 1. The solution of Sort(G) is an acyclic graph with at 
least |A|/2 arcs.

Proof. Observe that both subgraphs G f = (V , A f ) and 
Gb = (V , Ab) are cycle free. A cycle v1, v2, . . . , v1 would 
imply in the presence of an arc (i, j) with πi < π j and of 
an arc (k, l) with πk > πl . Also, as each arc in A is either 
in A f or Ab , one of those subsets must have at least |A|/2
arcs.

Algorithm Greedy(G)

This algorithm uses a greedy strategy while consider-
ing arcs for inclusion in an acyclic subgraph. The algorithm 
maintains two sets S and T . It greedily scans all arcs in A, 
adding an arc to S if with its addition the induced sub-
graph G[S] remains acyclic. Otherwise it adds the arc to T . 
When all arcs have been processed, the subset of largest 
cardinality, S or T , is selected to form the acyclic subgraph.

Theorem 2. The solution of Greedy(G) is an acyclic graph with 
at least |A|/2 arcs.

Proof. G[S] is acyclic by construction. To show that G[T ]
is also acyclic consider the vertices in V sorted respect-
ing a topological sort of G[S]. Each arc in T forms a cycle 
with a subset of arcs in S and in consequence it is a back-
ward edge considering the topological sort of G[S]. Since 
all arcs in T are backward considering that order of the 
vertices, the argument for Gb to be acyclic in the previous 
algorithm also holds for G[T ]. As in the previous proof, 
each arc in A is either in S or T and one of them must 
have at least |A|/2 arcs.

Algorithm Degree(G)

The third algorithm works as follows. It processes all 
the vertices of G , in any order, analyzing the incoming and 
outgoing arcs. If a vertex has more incoming arcs than out-
going ones, the incoming arcs are removed from the graph 
and added to a set A′ and the outgoing arcs are also re-
moved but discarded. If a vertex has the same number of 
incoming and outgoing arcs, the outgoing arcs are added 
to the set A′ and the incoming arcs are discarded. When 
all vertices are processed, the algorithm returns set A′ to 
form the acyclic subgraph.

Theorem 3. The solution of Degree(G) is an acyclic graph with 
at least |A|/2 arcs.

Proof. Consider a cycle x1, . . . , xk, x1 in the subgraph G[A′]
and, without loss of generality, let x1 be the vertex in this 
cycle that was processed by the algorithm before every 
other vertex in the cycle. Then, either arc (xk, x1) or arc 
(x1, x2) would have been discarded and therefore no cycle 
is possible. Also note that |A′| ≥ |A|/2, since each arc in 
A is examined once and, while processing a certain vertex, 
the algorithm always adds to |A′| at least as many arcs as 
it discards.

For several other approximative algorithms for MAS the 
reader is referred to [4].

3. Approximation algorithms for maximum acyclic 
subgraph under negative disjunctive constraints

The direct application of the algorithms presented 
above to the MASNDC does not guarantee a solution with 
at least half of the number of arcs in an optimal solu-
tion. In fact, the presence of disjunctive constraints may 
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